Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Чтобы представить ситуацию, когда экранирование не срабатывает, вспомним примеры индетерминизма из начала этой главы. Если некое оборудование неисправно, это может помешать идеальному экранированию его эффектов. Чтобы это проиллюстрировать, часто используется пример с неисправным тумблером, одновременно включающим телевизор и лампу (он не всегда замыкает цепь). Если телевизор работает, горит и лампа, и наоборот, но, бывает, оба прибора не активированы. Для решения этой проблемы можно добавить четвертую переменную – замкнутую цепь; но, чтобы узнать о ее необходимости, нужно иметь некоторое понимание о структуре проблемы, а оно есть не всегда.

Один из вариантов – не рассматривать точную взаимосвязь, но изучить, будет ли возможная причина иметь большое значение для следствия, если другие факторы останутся неизменными. До сих пор мы анализировали все ситуации, при которых то, что нельзя считать причиной, может все-таки повышать вероятность следствия; но возможно также, что истинная причина не повысит эту вероятность. Один из очевидных примеров – это причина, предотвращающая следствие (например, вакцина, которая предупреждает болезнь). С такими случаями разобраться легко, поскольку мы можем либо переопределить факторы в терминах снижения вероятности, либо применить отрицание следствия как интересующий нас исход (то есть «неболезнь»). Но как насчет иных ситуаций, когда положительная причина снижает вероятность или вообще не оказывает никакого действия? Здесь ключевые факторы – это выборка, на основе которой берется информация, и степень детализации переменных.

Парадокс Симпсона

Представим, что вы пациент, которому надо выбрать одного из двух врачей. У доктора А (Алиса) смертность пациентов, проходивших лечение от определенной болезни, составляет 40 %, у доктора B (Бетти) – 10 %. Если исходить только из этой информации, легко выбрать Бетти; на самом деле у вас недостаточно данных, чтобы принять подобное решение.

Действительно, возможно, что для каждого отдельного пациента лечение у Алисы дает лучшие результаты, даже если кажется, что общий уровень смертности у нее выше.

Алиса и Бетти не выбирают пациентов случайным образом: видимо, их направляют другие врачи, или те приходят по объявлениям. Поэтому, если большой опыт Алисы привлекает к ней самые сложные и трудноизлечимые случаи, общий уровень смертности может показаться очень плохим, хотя как доктор она и лучше.

В этом примере интересно то, что мы не просто обнаруживаем ошибочную причинную зависимость, но и можем реально выявить зависимость, обратную истинной: что результаты Алисы хуже, хотя в действительности они лучше. Точно такой же сценарий может иметь место с медикаментами, если не анализировать данные выборочных экспериментов (когда пациенты распределяются по группам лечения случайным образом).

Главная проблема в том, что может быть смещение относительно того, кто какое лекарство принимает, а устранить его на деле получится только выборочным распределением пациентов по группам. К примеру, если больные с агрессивной формой рака получают лечение А, а с более легкими случаями – лечение В, несомненно, результаты А покажутся хуже, поскольку эта группа имеет более серьезные проблемы. Смещение выборки – одна из причин, по которой так сложно делать логические заключения на основе данных наблюдения. Можно обнаружить, что люди, активно занимающиеся спортом в пожилом возрасте, живут дольше тех, кто ведет малоподвижный образ жизни, – но, возможно, потому, что физически активные всю жизнь просто здоровее прочих.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий