Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:161
-
Рейтинг:
-
Ваша оценка:
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
Обратимся к диаграмме на рис. 5.5 (а). Есть лекарство, и есть усталость; похоже, первое повышает вероятность второй. Серый столбец выше для усталости, чем для неусталости, показывая, что вероятность выше для случая, когда лекарство истинно, чем ложно. Но как только мы разделим варианты, когда человек болен и когда нет (рис. 5.5 (б) и 5.5 (в)), вероятность усталости уравнивается, вне зависимости от значения препарата. Таким образом, лечение не меняет возможность усталости, как только мы получаем знание о болезни.
Рис. 5.5. Если не принимать во внимание состояние заболевания, кажется, что M и F коррелируют. Если, однако, учитывать этот фактор, корреляции нет (F равновероятен независимо от истинности М)
Подобный тип разделения также может иметь место в цепи событий. Скажем, болезнь приводит к назначению лекарства, и здесь оно действительно вызывает усталость как побочный эффект. Если отношения D → M и M → F истинны, мы также обнаружим, что болезнь повышает вероятность усталости. Однако часто требуется выявить самые непосредственные причинные взаимосвязи, чтобы осуществить более прямые вмешательства. Чтобы избежать появления симптома, нужно отменить лекарство или перейти на другое; но, если мы придем к ошибочному заключению, что как болезнь, так и лекарство провоцируют усталость, мы не сможем узнать, что смена препарата могла бы предотвратить возникновение симптома. И снова, если мы ставим условием М, вероятностное отношение между D и F исчезает.
Как обычно, ни один метод не совершенен, и успех зависит на самом деле от измерения общей причины. То есть, если рецессия приводит одновременно к снижению инфляции и безработице и мы не знаем, имеет ли место рецессия, нет возможности использовать условие экранирования, чтобы выяснить, не ложна ли видимая причинная зависимость между инфляцией и безработицей. Получается, реальные мы найдем взаимосвязи или ошибочные, целиком зависит от наличия верного набора переменных.
Эта проблема вновь выйдет на передний план, когда в главе 6 мы затронем вычислительные методы. Но, хотя на базе ряда сценариев мы и располагаем несколькими способами отыскать скрытую общую причину, это не решает проблему вычислительных методов в целом.
На этом, однако, история не заканчивается. Иногда просто нет единственной переменной для экранирования двух следствий. Скажем, Алиса и Боб любят занятия по машинному обучению[213] и предпочитают те, которые назначены на послеобеденное время. Тогда, взяв условием либо содержание курса, либо время, мы не сможем полностью экранировать такие переменные, как выбор занятий Алисой и Бобом. Если известно только время занятий, то запишется на них Боб или нет, действительно дает информацию о выборе Алисы, так как этот фактор становится косвенным индикатором содержания курса. Нет единственной переменной, экранирующей А и Б друг от друга.
И если мы добавим переменную, которая будет истинной, только если курс одновременно и начинается после полудня, и посвящен машинному обучению, этот фокус поможет. Но, чтобы понять необходимость этой более сложной переменной, нужно знать кое-что о проблеме и потенциальных причинных взаимосвязях, а это не всегда возможно.
Пока мы вообще не затрагивали временные паттерны (приняли как данность, что причина происходит до следствия). Однако иногда используется фактор, способный объяснить корреляцию, который мы обычно не включаем в свой анализ, – изменение взаимозависимости во времени.