Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Скажем, Адам и Бетти больны гриппом. За неделю до того у Адама был обед с Клер, а та заболевает гриппом через день после второго обеда, с Бетти. Шансы на то, что Клер заболеет гриппом, росли после ее встречи с Адамом, но потом стали снижаться, когда наступил инкубационный период. Они возросли снова после обеда с Бетти и оставались высокими, пока та на самом деле не заболела. Это показано на рис. 8.5.

Рис. 8.5. Вероятность гриппа с течением времени. Шанс растет после первого обеда и снижается до второго. После второго контакта вероятность растет то того, пока человек действительно не заболевает гриппом

Несмотря на то что перед нами два примера причины-типа (контакт с носителем гриппа), мы видим, что здесь нет сверхдетерминированности, поскольку только один контакт стал причиной болезни. В предыдущем разделе мы разбирались с подобной ситуацией с помощью временных паттернов на уровне типа. Этот подход имеет отличия, поскольку здесь мы анализируем изменение вероятности на уровне токена. Это также поможет разобраться со случаями, где токен-вероятность отличается от вероятности-типа.

Известно, что вакцины в целом предотвращают летальный исход, но в некоторых редких случаях становятся его причиной; конкретное растение может погибнуть, если его полить кофе, даже если никакое другое растение от этого не погибало; можно возложить вину на человека, попытавшегося совершить убийство, даже если потенциальная жертва выжила. Ключевое ограничение в следующем: исходя из общей информации для объяснения конкретных случаев, мы допускаем, что значимость на уровне типа равна значимости на уровне токена.

Этот подход – посмотреть, как вероятность события меняется после наступления причины и как меняется со временем, – предложил философ Эллери Иллс[332]. Проблема гораздо шире, чем наши возможности ее рассмотрения на этих страницах, однако суть подхода в том, что единичные вероятности трактуются иначе, чем общие, и в основе лежит изменение вероятности реального события с течением времени.

Использование вероятностей единичного случая, который мы пытаемся объяснить, означает, что мы можем провести различие между тем, что случается как правило, и тем, что случилось в действительности. Здесь по-прежнему учитывается причина, обычно предшествующая событию и влекущая его за собой.

Немаловажно, что при этом мы можем обновить аналитические выводы, приведя их в соответствие с тем, что наблюдаем. В одном из примеров Иллса озорные белки любили отталкивать мячи для гольфа от лунок, но однажды зверек помог игроку, направив мяч прямо в лунку. Если применить метод, основанный на вероятностях уровня типа, то, даже если мы в действительности видим, что траектория мяча делает попадание все более и более вероятным, и наблюдаем, как меняется его путь после того, как по нему ударили, мы все равно не сможем откорректировать уже имеющееся знание на уровне типа, чтобы учесть новые данные. И это приведет к получению не связанных между собой и контринтуитивных результатов.

Когда вероятность меняется после наступления события, становится высокой и остается такой, пока не случится следствие, говорят, что следствие произошло из-за причины. Наоборот, если вероятность события падает после наступления события, тогда следствие происходит, несмотря на событие[333]. Трудности, характерные для этого подхода, имеют в основном практическую природу, поскольку, к примеру, непросто выяснить вероятность попадания мяча в лунку на каждой точке его траектории.

Автоматизация объяснения

Какими возможностями мы располагаем, чтобы протестировать контрфактуальные рассуждения? Как узнать, насколько изменилась вероятность со временем?

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий