Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

INUS-подход Маки исходит из следующего допущения: нам известно достаточно о механизме действия тех или иных вещей, чтобы определить детерминистские причинные комплексы: в присутствии некоего набора факторов всегда случается следствие. Но, как мы уже видели, многие взаимоотношения носят вероятностный характер (по причине либо фактического индетерминизма, либо неполного знания о мироздании). Причина, имеющая очень низкий шанс генерирования следствия, все же способна оставаться причиной и в токен-случае. Но вероятности, или силы каузальных зависимостей, которые мы рассчитываем, дают некоторую информацию о ее возможности. Нужно использовать эти весовые коэффициенты, чтобы понять, насколько они основательны с точки зрения различных объяснений[330].

Посмотрим, как это работает.

Скажем, требуется выяснить, почему Ирен не спала прошлой ночью. У нас есть мера причинной значимости (см. главу 6), и мы обнаруживаем, что 100 мл кофе эспрессо при бессоннице имеет коэффициент значимости 0,9, если некто пытается заснуть в пределах следующих 4 часов.

Если известно, что Ирен пробовала уснуть через 3 часа после того, как выпила именно столько эспрессо, значимость этого события для ее случая бессонницы будет 0,9. Если бы вместо сна она решила посмотреть телевизор, но через 6 часов после выпитого кофе не могла уснуть, значимость фактора напитка могла быть ниже 0,9, так как был нарушен предел обычного временного диапазона. На рис. 8.1 показана эта последовательность событий и известное временное окно причинной зависимости (серым цветом). Интервал в 6 часов больше известного окна, показанного серым прямоугольником, поэтому кажется невозможным, что бессонницу Ирен вызвал кофе, который она выпила ранее этого времени.

Рис. 8.1. Здесь эспрессо вызывает бессонницу в пределах 4 часов

Конечно, мы и не подумаем, что бессонница будет одинаково возможна в пределах всего временного окошка от 0 до 4 часов и через 4 часа ее вероятность будет стремиться к нулю. Скорее рассудим, что изображение на рис. 8.2 более правдоподобно: здесь шанс после четвертого часа снижается медленно. Оценивая значимость причины в различных временных точках до наступления следствия (или объясняя следствия в различные временные точки после конкретного случая причины), нужно комбинировать эту вероятность с коэффициентом значимости. То есть более сильная причина, немного выступающая за пределы известного временного интервала, более значима, чем слабая, когда временные паттерны типа и токена совпадают. Если в комнате Ирен слишком жарко, когда она пытается заснуть, это может повысить шанс нарушения сна, однако мы по-прежнему будем утверждать, что главный виновник бессонницы – кофе за 4,5 часа до того.

Рис. 8.2. Вероятность бессонницы с течением времени. На оси Х показаны часы после выпитого эспрессо

Основная идея такого подхода – оценка значимости на уровне типа с помощью информации на уровне токена. Мы можем обнаружить, что в специфических случаях значимость того или иного фактора ниже его значимости на уровне типа из-за различий временных паттернов или неопределенности событий. Исходя из известного механизма действия (например, медикамента) или предыдущей информации (вычисления вероятности следствия), мы можем создать функцию, которая покажет, как сопоставить наблюдение с шансом по-прежнему активной причины.

Рис. 8.3 дает представление о некоторых функциях. На рис. 8.3 (а) показаны только два значения вероятности: 0 и 1. Это означает, что временное окно – единственный период, когда причина может вызвать следствие, и временные точки вне его не значимы. С другой стороны, на рис. 8.3 (в) шанс того, что причина вызовет следствие вне временного окна, падает гораздо медленнее.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий