Knigionline.co » Прикладная литература » Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Любой с нас горазд повышать, разделять, строить во уровень также осуществлять прочие процедуры надо крупными количествами во разуме также со огромный быстротой. С Целью данного никак не необходимо регулировать 10-ки тыс. образцов также обучаться годами — довольно применять элементарные способы, изображенные во данной книжке. Они легкодоступны с целью людишек каждого года также различных точных возможностей.Данная книжка обучит вам рассматривать во разуме стремительнее, нежели в калькуляторе, фиксировать крупные количества также извлекать с арифметики наслаждение.Ми нравится рассуждать об этих людах, каким первоначальным прибыла во мозг идея рассматривать предмета. Скорее Всего, они одновременно подметили, то что результат в перстах прекрасно функционирует. Способен являться, тот или иной-нибудь древнейший индивид согласно фамилии Ог (появившийся еще вплоть до потопа) либо единственный с его друзей заявил: «Нас здесь единственный, 2, 3, 4, 5. Означает, нам необходимо 5 кусочков плода.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги

Например, с налогом 7,75 % магический делитель D равен 7 х 4/3 = 28/3 = 9 1/3, что мы округлим до 9 в меньшую сторону.

Для налога с продаж в размере 6 и 3/8 % сначала посчитайте налог в размере 6 %, затем разделите полученное число на 16, так как 6/16 = 3/8. (Чтобы разделить число на 16, разделите его дважды на 4, или сначала на 8, а затем на 2.) Попробуйте придумать метод для расчета налога с продаж в вашем регионе. Вы поймете, что эта задача не столь сложна, как кажется!

НЕСКОЛЬКО ИНТЕРЕСНЫХ ВЫЧИСЛЕНИЙ

В этом разделе мы вкратце рассмотрим несколько практических задач, связанных с процентами, временем увеличения суммы ваших сбережений и сроками погашения кредита.

Начнем со знаменитого Правила 70, которое гласит: чтобы найти число лет, необходимых для удвоения ваших денег, разделите число 70 на годовую процентную ставку. Предположим, вам предложили инвестиционную возможность, которая сулит выплаты в размере 5 % годовых. Так как 70 ÷ 5 = 14, потребуется около 14 лет, чтобы ваши деньги удвоились. Например, если вы разместили 1000 долларов на депозите под такую процентную ставку, то после 14 лет на нем будет 1000 х (1,05)14 = 1979,93 доллара. С процентной ставкой 7 %, согласно правилу 70, вам понадобится около 10 лет для удвоения денег. В самом деле, если вы вложите 1000 долларов по этой годовой процентной ставке, то через 10 лет получите 1000 х (1,07)10 = 1967,15 доллара. Что касается ставки в 2 %, то для удвоения сбережений в данном случае понадобится около 35 лет!

1000 х (1,02)35 = 1999,88

Еще одно похожее правило называется Правило 110; оно определяет, как долго ваши деньги будут утраиваться. Например, при ставке в 5 %, так как 110 ÷ 5 = 22, потребуется около 22 лет для того, чтобы 1000 долларов превратилась в 3000 долларов. Это подтверждается вычислением 1000 х (1,05)22 = 2 925,26 доллара. Правило 70 и Правило 110 основаны на свойствах числа e = 2,71828… и «натуральных логарифмах», но, к счастью, нам нет нужды использовать высшую математику, чтобы применять их.

Предположим, вы заняли деньги и рано или поздно должны их вернуть. Например, вы взяли кредит 360 000 долларов с годовой ставкой 6 % (то есть 0,5 % ставки каждый месяц) на 30 лет. Сколько примерно придется выплачивать ежемесячно? Прежде всего, каждый месяц вам понадобится 1800 долларов (360 000 долларов умножить на 0,5 % = 1800 долларов)

только для того, чтобы покрыть проценты. (Хотя на самом деле ваши долги по процентам будут распределяться равномерно.) Так как вы совершите 30 х 12 = 360 месячных выплат, то выплата дополнительной тысячи долларов каждый месяц покроет остаток вашего займа. Итак, верхняя граница ежемесячных выплат будет равна 1800 долларов + 1000 долларов = 2800 долларов. К счастью, вам не придется платить столько сверху. Вот мое правило большого пальца для оценки месячных платежей.

Обозначим буквой i вашу месячную процентную ставку.

(Годовая ставка, деленная на 12.) Тогда для выплаты кредита в размере P долларов за N месяцев месячная выплата М будет приблизительно равна:

В нашем последнем примере P = 360 000 долларов и i = 0,005. Формула показывает, что месячная выплата должна составлять:

Обратите внимание, что первые два числа в числителе при умножении дают 1800 долларов. С помощью калькулятора (для разнообразия) подсчитаем (1,005)360 = 6,02, тогда месячная выплата должна равняться 1800 х (6,02)/5,02, что примерно составляет 2160 долларов в месяц.

Еще один пример. Предположим, вы взяли машину в кредит и после первоначального взноса должны выплатить 18 000 долларов за 5 лет с годовой ставкой 4 %. Без процентов вы должны были бы платить 300 долларов (18 000 ÷ 60) в месяц. Так как ставка процента за первый месяц будет составлять 18 000 х 0,04/12 = 720/12 = 60 долларов, отсюда следует, что платить в месяц нужно не больше 300 + 60 = 360 долларов.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий