Knigionline.co » Прикладная литература » Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Любой с нас горазд повышать, разделять, строить во уровень также осуществлять прочие процедуры надо крупными количествами во разуме также со огромный быстротой. С Целью данного никак не необходимо регулировать 10-ки тыс. образцов также обучаться годами — довольно применять элементарные способы, изображенные во данной книжке. Они легкодоступны с целью людишек каждого года также различных точных возможностей.Данная книжка обучит вам рассматривать во разуме стремительнее, нежели в калькуляторе, фиксировать крупные количества также извлекать с арифметики наслаждение.Ми нравится рассуждать об этих людах, каким первоначальным прибыла во мозг идея рассматривать предмета. Скорее Всего, они одновременно подметили, то что результат в перстах прекрасно функционирует. Способен являться, тот или иной-нибудь древнейший индивид согласно фамилии Ог (появившийся еще вплоть до потопа) либо единственный с его друзей заявил: «Нас здесь единственный, 2, 3, 4, 5. Означает, нам необходимо 5 кусочков плода.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги

Заметим, что приближение будет наиболее точным, когда исходные числа близки друг к другу. Попробуйте оценить ответ для задачи типа «3 на 2».

Путем округления 63 до 60 и 728 до 731 создается задача на умножение типа «3 на 1», что отдаляет приближенную оценку на величину 2004 от точного ответа. Здесь погрешность составляет 4,3 %.

Попробуйте дать приблизительную оценку следующей задаче «3 на 3».

Как видите, хотя мы округлили оба числа на 8 в разные стороны, приближенный ответ отклоняется более чем на 1000 от точного значения. Так происходит потому, что перемножаемые числа в данной задаче большие и число, на которое они округляются, тоже большое. Поэтому получившаяся в результате оценка будет отклоняться на бóльшую величину. Но относительная погрешность по-прежнему меньше 1 %.

Насколько далеко можно зайти, используя систему приближенной оценки для задач на умножение? На столько, на сколько пожелаете. Просто нужно знать названия больших чисел. Тысяча тысяч — это миллион, тысяча миллионов — миллиард. Зная это, попробуйте решить задачу со следующими числами.

Как и ранее, она сводится к округлению чисел, для того чтобы они стали простыми, такими как 29 000 000 и 14 000.

Отбросив все нули, получим обычную задачу «2 на 2»: 29 х 14 = 406 (29 х 14 = 29 х 7 х 2 = 203 х 2 = 406). Следовательно, ответ равен приблизительно 406 миллиардам, так как тысяча миллионов — это миллиард.

ОЦЕНКА КВАДРАТНЫХ КОРНЕЙ: ДЕЛЕНИЕ И УСРЕДНЕНИЕ

Корень квадратный из n (обозначается ) — это число, которое при умножении само на себя дает n. Например, квадратный корень из 9 равен 3, поскольку 3 х 3 = 9. Квадратный корень используется при решении многих научных и инженерных задач и почти всегда рассчитывается на калькуляторе.

Следующий метод обеспечивает точную оценку ответа.

При оценке квадратного корня основная цель — найти число, которое при умножении само на себя приближается к исходному. Так как квадратный корень из большинства чисел не целое число, ваша оценка, вероятно, тоже будет содержать дробную часть.

Начнем с приближенной оценки квадратного корня из 19.

Первое действие — выяснить, какое число при умножении само на себя будет максимально приближаться к 19. Берем два возможных варианта: 4 х 4 = 16 и 5 х 5 = 25. Так как 25 слишком много, ответ должен быть 4 плюс «что-то». Следующий шаг — деление 19 на 4, дающее 4,75. Поскольку 4 х 4 меньше, чем 4 х 4,75 = 19 (что, в свою очередь, меньше произведения 4,75 х 4,75), получается, что 19 (или 4 х 4,75) находится между 42 и 4,752. Следовательно, квадратный корень из 19 лежит где-то между 4 и 4,75.

Я бы предположил, что он будет посередине, на отметке 4,375. В действительности это 4,359, так что наша оценка довольно близка к истинному значению. Проиллюстрируем данную процедуру следующим образом.

На самом деле данный ответ можно получить другим, более простым способом. Мы знаем, что 4 в квадрате равно 16, что меньше 19 на 3 единицы. Чтобы уточнить нашу оценку, прибавим к ней погрешность, деленную на удвоенное предположение. То есть к 4 прибавим 3, деленное на 8, чтобы получить 4⅜= 4,375. Заметим, что этот метод всегда будет давать ответ немного больше точного.

Теперь попробуйте решить более сложный пример. Чему равен квадратный корень из 87?

Сначала определим приблизительный итог исходя из того, что 9 х 9 = 81 и 10 х 10 = 100. Это означает, что ответом будет 9 с хвостиком. Поделив 87 на 9 (до десятых), получим 9,66.

Чтобы улучшить приближенную оценку, возьмем среднее между 9 и 9,66, которое равно 9,33 — точный квадратный корень из 87, округленный до десятых! Другим способом приближенная оценка равна 9 + (погрешность)/18 = 9 + 6/18 = 9,33.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий