Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)
-
Год:2005
-
Название:Магия чисел. Ментальные вычисления в уме и другие математические фокусы
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Владислав Ласкавый
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:75
-
ISBN:978-5-00057-270-2
-
Рейтинг:
-
Ваша оценка:
Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги
Сложение длинных столбиков чисел — как раз та самая задача, с которой вы можете столкнуться по работе или во время подсчета собственных доходов и расходов. Суммируйте числа из следующего столбика привычным способом, а затем посмотрите, как это сделал я.
Когда у меня есть ручка и бумага, я складываю числа сверху вниз и справа налево, как учили в школе. Практикуясь, вы сможете решать эти задачи в уме так же быстро (или быстрее), как и на калькуляторе. Когда я суммирую цифры, единственные числа, которые я «слышу», — это частичные суммы.
Я всегда сначала суммирую крайнюю справа колонку: 8 + 4 + 0 + 7 + 7 + 5 и слышу: 8… 12… 19… 26… 31. Затем я записываю 1, держа в уме 3. Следующая колонка звучит так: 3… 5… 13… 15… 22… 23… 25. Получив итоговый ответ, я записываю его, а затем проверяю свои вычисления путем сложения чисел снизу вверх и обычно получаю такой же результат.
Например, суммирую цифры первой колонки снизу вверх: 5 + 7 + 7 + 0 + 4 + 8 (у меня в голове при этом звучит 5… 12… 19… 23… 31), затем мысленно переношу цифру 3 и складываю 3 + 2 + 1 + 7 + 2 + 8 + 2 и т. д. Благодаря сложению чисел в другом порядке вы снижаете вероятность совершить одинаковую ошибку дважды. Конечно, если ответы отличаются, то хотя бы одно из вычислений было неправильным.
МОДУЛЬНЫЕ СУММЫ
Когда я не уверен в ответе, я проверяю решение, используя метод, который называю «модульные суммы» (потому что он основан на элегантной математике из раздела модульной арифметики[7]). Он также известен под названиями «цифровые корни» и «метод сравнений по модулю 9». Признаю, что этот метод не слишком практичен, зато он легок в применении.
В методе модульных сумм вы складываете цифры каждого из чисел до тех пор, пока не останется одна-единственная цифра. Например, чтобы вычислить модульную сумму числа 4328, сложите 4 + 3 + 2 + 8 = 17. Затем суммируйте цифры числа 17, получится 1 + 7 = 8. Следовательно, модульная сумма числа 4328 равна 8. Для предыдущей задачи модульная сумма каждого из чисел вычисляется таким образом:
Как показано выше, следующий шаг — сложение всех модульных сумм 8 + 2 + 8 + 1 + 5 + 5. Получается 29, что дает модульную сумму 11, которая, в свою очередь, дает модульную сумму 2. Обратите внимание, что модульная сумма числа 8651 тоже равняется 2. Это не совпадение! Если вы посчитали ответ и модульную сумму правильно, то ваша итоговая модульная сумма должна быть такой же. Если они различаются, то вы определенно допустили где-то ошибку: существует вероятность (около 1 к 9), что совпадение модульных сумм будет случайным. При наличии ошибки этот метод позволит обнаружить ее в 8 случаях из 9.
Метод модульных сумм больше известен математикам и бухгалтерам как «метод сравнений по модулю 9», потому что модульная сумма числа обычно равна остатку, полученному в результате деления на 9. В случае числа 8651 модульная сумма равна 2: если вы разделите 8651 на 9, то в ответе будет 961 с остатком 2. Существует одно небольшое исключение.
Напомним, что сумма цифр любого числа, кратного 9, тоже кратна 9. Значит, если число кратно 9, оно будет иметь модульную сумму 9, даже если остаток равен 0.
ВЫЧИТАНИЕ НА БУМАГЕ
Нельзя вычитать столбцы чисел таким же способом, как складывать. Предпочтительнее последовательно отнимать число за числом. Это означает, что все задачи на вычитание включают лишь два числа. Еще раз повторю: с карандашом и бумагой легче вычитать справа налево. Чтобы проверить ответ, прибавьте его ко второму числу. Если все правильно, то должно получиться вычитаемое число.
Если хотите, то для проверки ответа можно использовать модульные суммы. Разница здесь (по сравнению со сложением) в том, что нужно вычитать их и затем сравнить полученное число с модульной суммой ответа.