Математика покера от профессионала - Дэвид Склански (1999)
-
Год:1999
-
Название:Математика покера от профессионала
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. В. Бартини
-
Издательство:Эксмо
-
Страниц:14
-
ISBN:978-5-699-82937-8
-
Рейтинг:
-
Ваша оценка:
Знакомый игрок в покер, владелец 3-х золотых браслетов WSOP Дэвид Склански открывает перед собственными читателями всю силу математического расклада в покере. Ныне цифры всякий раз подскажут вам, какую избрать стратегию с определенным конкурентом и какое принять заключение в всякой истории. Математические схемы готовы привести ваш манера игры к победному методу – системе, которая несомненно поможет для вас гарантированно быть в плюсе при постоянной и длительной этой ирге. «Это книжка об совокупных доктринах и концепциях игры в покер, которые применимы буквально во всех вариациях покера от 5-карточного дро до техасского холдема. Молодые игроки в покер временами узнают: «Как вы поступаете в предоставленной определенной ситуации?» На подобный вопрос в реальности не есть верного ответа, потому что сама его постановка считается неправильной. Правило, которое предписывает скидывать 1 руку, уравнивать с иной и увеличивать с третьей, не продвинет игрока далее самых почв.
Чем какого-либо другого было бы задать вопрос: «Какие моменты вы рассматриваете в данной определенной истории, до этого чем решаете, собственно что для вас делать?» В «Теории покера» диспутируется как раз это.»
Математика покера от профессионала - Дэвид Склански читать онлайн бесплатно полную версию книги
Каждый раз, когда оппонент не получает против вас достаточно шансов, вы хотите увидеть колл, даже если это означает, что у него появится возможность вас перетянуть. Если в примере с флешем, представленным в начале главы, банк был бы $20 вместо $80, вы бы добивались, чтобы оппонент с флеш-дро сделал колл ваших $10, поскольку он 5 к 1 андердог, имея всего 3 к 1 на свои деньги. Если он делает колл и достраивает флеш, то вам не повезло. Тем не менее такая тактика неправильна, поскольку обладает отрицательным ожиданием, и вы выигрываете каждый раз при подобной игре вашего оппонента.
Когда вы имеете руку, с которой хотите увидеть колл, вам не следует заставлять вашего оппонента пасовать, делая чрезмерную ставку в безлимитных и пот-лимитных играх. Такая ситуация однажды произошла, когда я играл в безлимитный холдем. Оставалось прийти всего одной карте, и у меня был стрит, который на тот момент являлся натсом – то есть лучшей возможной рукой. Я поставил что-то около $50, игрок слева от меня уравнял, и соперник позади него повысил на весь свой стек, который составлял около $250.
Поскольку у меня была лучшая возможная рука, вопрос состоял в следующем: следует ли мне повысить или только делать колл? В банке находилось порядка $500. Поскольку третий участник раздачи уже внес в банк весь свой стек, мне требовалось думать только о человеке, сидящем за мной. Я знал, что в случае моего ререйза, скажем на $400 сверху, что подняло бы ставку до $600, он определенно бы сбросил; в действительности он сбросил бы при повышении практически на любую сумму. Но если я всего лишь делаю колл $200, мой соперник, возможно, уравняет.
Какое действие я хотел от него увидеть? Я был практически уверен, что у моего оппонента было две пары. Если бы я сделал колл $200, в банке оказалось бы около $700, что дало бы противнику шансы 7 к 2 на колл $200 с его двумя парами. Однако вероятность того, что он не соберет фулл хаус, была 10 к 1 (в колоде 40 карт, которые ему не помогают, и 4, дающие фулл хаус). Таким образом, если бы мой оппонент знал, что у меня стрит, для него было бы неправильным принимать 7 к 2 шансы банка, имея 10 к 1 на успех. Поэтому я всего лишь уравнял $200, и, согласно моим стремлениям и ожиданиям, он тоже.
Грустное окончание данной истории заключается в том, что мой противник все же собрал фулл хаус и сделал очень небольшую ставку, которую я заплатил. Многие потом утверждали, что было неверным решением позволять ему остаться в раздаче и мне следовало выдавить его рейзом, но в действительности они не правы. Мне следовало предоставить этому оппоненту шансы на ошибку, что я и сделал, поскольку каждый раз, когда мой соперник ошибается, я выигрываю на длинной дистанции.
«Ошибки», согласно Фундаментальной теореме покера
Очень важно понимать, что когда мы говорим о совершении ошибки, согласно Фундаментальной теореме покера, мы не обязательно имеем в виду плохую игру. Мы подразумеваем очень странный род ошибок – действовать иначе, нежели как вы играли бы, видя карты оппонентов. Если у меня роял-флеш и у кого-то стрит-флеш от короля, этот игрок допускает ошибку, уравнивая мою ставку. Но его, конечно, нельзя обвинять в плохой игре из-за данного колла или рейза, который он тоже мог бы сделать. Поскольку ему неизвестно, что у меня на руках, он допускает ошибку в другом смысле этого слова.