Математика покера от профессионала - Дэвид Склански (1999)
-
Год:1999
-
Название:Математика покера от профессионала
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. В. Бартини
-
Издательство:Эксмо
-
Страниц:14
-
ISBN:978-5-699-82937-8
-
Рейтинг:
-
Ваша оценка:
Знакомый игрок в покер, владелец 3-х золотых браслетов WSOP Дэвид Склански открывает перед собственными читателями всю силу математического расклада в покере. Ныне цифры всякий раз подскажут вам, какую избрать стратегию с определенным конкурентом и какое принять заключение в всякой истории. Математические схемы готовы привести ваш манера игры к победному методу – системе, которая несомненно поможет для вас гарантированно быть в плюсе при постоянной и длительной этой ирге. «Это книжка об совокупных доктринах и концепциях игры в покер, которые применимы буквально во всех вариациях покера от 5-карточного дро до техасского холдема. Молодые игроки в покер временами узнают: «Как вы поступаете в предоставленной определенной ситуации?» На подобный вопрос в реальности не есть верного ответа, потому что сама его постановка считается неправильной. Правило, которое предписывает скидывать 1 руку, уравнивать с иной и увеличивать с третьей, не продвинет игрока далее самых почв.
Чем какого-либо другого было бы задать вопрос: «Какие моменты вы рассматриваете в данной определенной истории, до этого чем решаете, собственно что для вас делать?» В «Теории покера» диспутируется как раз это.»
Математика покера от профессионала - Дэвид Склански читать онлайн бесплатно полную версию книги
Предположение, что ваша игра безупречна, конечно, является очень натянутым. Немногие, если вообще такие люди бывают, все время играют идеально, однако мы стремимся к такой игре. И, следовательно, важно понимать, что нет какого-то одного конкретного правильного розыгрыша покерной руки – это вам не бридж. Напротив, вы должны подстраиваться под оппонентов и стараться играть по-разному даже с одними и теми же противниками, о чем мы поговорим в следующих главах.
Более того, иногда бывает правильно сыграть неверно! Например, можно намеренно сыграть плохо, чтобы получить преимущество в дальнейшем. Кроме того, никто не мешает вам играть хуже, чем оптимально, против слабых оппонентов, имеющих мало денег на проигрыш, или когда у вас самих короткий банкрол. В подобных ситуациях неверно гнаться за незначительным преимуществом. Вам не следует ставить рейзы максимального размера, будучи небольшим фаворитом. Сбрасывайте руки, которые только едва стоят колла. Вы понизили свое почасовое ожидание, но обеспечили выигрыш. Зачем давать слабым игрокам шанс оказаться удачливыми и сорвать большой куш или разорить вас, если у вас скромный банкрол. Вы все равно получите деньги, играя не до конца оптимально. Это всего лишь отнимет у вас еще несколько часов.
Попытайтесь оценить большинство покерных игр с точки зрения вашего почасового ожидания, подмечая, какие ошибки совершают ваши оппоненты и как дорого они им обходятся. Не сидите в игре с недостаточным почасовым ожиданием, если только вы не рассчитываете, что игра вскоре станет лучше – с приходом слабых игроков, или если вам известно, что некоторые из ваших сильных оппонентов, начиная проигрывать, имеют тенденцию скатываться до плохой игры. Если такие хорошие игроки выигрывают, вам следует по возможности выйти. Однако иногда верным решением будет продолжить игру с низким почасовым ожиданием по имиджевым причинам – чтобы о вас не думали как о человеке, играющем только с большим преимуществом. При такой репутации вы можете нажить врагов, потерять деньги на длинной дистанции и даже получить отказ на участие в некоторых играх.
3. Фундаментальная теорема покера
Как существуют Основная теорема алгебры и Основная теорема анализа, так есть и Фундаментальная теорема покера. Настало время вас с ней познакомить. Покер, как и все другие карточные игры, является игрой с неполной информацией, что отличает его от других настольных игр наподобие шахмат, нард или шашек, где вы всегда видите, что делает ваш противник. Если бы карты каждого игрока можно было посмотреть в любое время, то верное математическое решение для любого участника всегда бы точно вычислялось. Любой игрок, отклоняющийся от правильной игры, понижал бы свое математическое ожидание и увеличивал бы ожидание своих оппонентов.
Конечно, при возможности видеть все карты покера просто бы не существовало. Искусство данной игры заключается, с одной стороны, в заполнении пробелов в информации, получаемой от ваших оппонентов при наличии ставок, и, с другой стороны, в сокрытии от других игроков любой информации о своей руке сверх той, что вы сами хотите им сообщить.
Вышесказанное приводит нас к Фундаментальной теореме покера:
Каждый раз, когда вы разыгрываете руку иначе, нежели вы сыграли бы ее, видя все карты ваших оппонентов, они выигрывают; и каждый раз, когда вы разыгрываете вашу руку тем же образом, каким вы бы сыграли ее, если бы могли видеть все карты соперников, они проигрывают. Справедливо и обратное: каждый раз, когда ваши оппоненты разыгрывают свою руку не так, как в случае, когда у них есть возможность видеть все ваши карты, вы выигрываете; и каждый раз, когда они разыгрывают свою руку тем же образом, каким они сыграли бы, видя все ваши карты, вы проигрываете.