Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:160
-
Рейтинг:
-
Ваша оценка:
Автор показывает, что такое причинно-следственная связь, поясняет, почему в ее определении мы часто ошибаемся, как можно принимать верные решения. Благодаря этой книге вы научитесь анализировать информацию, выявлять причинно-следственные связи, объединять прошлое, предсказывать будущее.
Книга будет интересна философам, аналитикам, экономистам, медикам, юристам, начинающим ученым.
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
Важно понимать, что причинно-следственные связи не единственное, хотя и возможное в ряде случаев, объяснение корреляций. К примеру, мы нашли соотношение в ситуации, когда человек, съевший плотный завтрак, вовремя успевает на работу; однако, вероятно, оба фактора имеют общую причину: человек рано встал, а значит, у него было время хорошо позавтракать, вместо того чтобы в спешке бежать на службу. Выявив корреляцию между двумя переменными, нужно проверить, способен ли подобный неизмеренный фактор (общая причина) объяснить эту взаимосвязь.
В ряде случаев (о которых мы поговорим в главе 4) таким общим фактором оказывается время. Можно обнаружить множество ошибочных корреляций между факторами с устойчивыми по времени тенденциями. К примеру, если количество пользователей интернета всегда увеличивается и национальный долг – тоже, эти факторы будут взаимосвязаны. Но в целом мы ссылаемся на переменную или набор переменных, объясняющих корреляцию. Например, можно задуматься: действительно ли усердное учение обеспечивает лучшие оценки, или более вероятно, что лучшие студенты и усердно учатся, и получают высокие оценки. Возможно, врожденная способность становится общей причиной и оценок, и времени, проведенного за учебниками. Если бы была возможность изменить способность, это могло повлиять и на оценки, и на время обучения, но любое экспериментирование с оценками и усердием в учении не оказало бы никакого воздействия на два других фактора.
Аналогичная причина корреляции без прямой причинной зависимости – промежуточная переменная. Скажем, проживание в городе соотносится с низким индексом массы тела (ИМТ), поскольку горожане больше ходят, чем ездят на машине, и проявляют высокую физическую активность. Таким образом, жизнь в городе косвенно приводит к низкому ИМТ, однако переезд в город и постоянное использование транспорта – плохая стратегия для желающих похудеть. Большую часть времени мы ищем косвенные причины (например, курение вызывает рак легких, а не особые биологические процессы, посредством которых и происходит воздействие), но, если знать механизм (как именно причина производит следствие), можно найти лучшие пути для вмешательства.
Наконец, агрегированные данные могут приводить к странным результатам. В статье за 2012 год в журнале New England Journal of Medicine рассказывалось о поразительном соотношении между количеством шоколада на душу населения и числом Нобелевских лауреатов на 10 000 000 жителей[126]. Коэффициент корреляции составлял 0,791. Этот показатель возрос до 0,862 после исключения статистики по Швеции – стране, давшей гораздо больше лауреатов престижной премии, чем ожидалось, судя по статистике потребления шоколада.
Заметим, однако, что данные о шоколаде и Нобелевских премиях были взяты из различных источников, где каждая страна оценивалась отдельно. Это означает, что на самом деле мы не имеем ни малейшего представления, действительно ли потребители шоколада и лауреаты Нобелевки – представители одной и той же группы. Далее, количество награжденных – лишь малая доля населения, а значит, несколько дополнительных премий могли драматичным образом изменить расчеты. Большинство сообщений об отмеченной корреляции фокусировалось на потенциальном наличии причинной взаимосвязи между потреблением шоколада и получением награды, подавляя заголовками вроде «Шоколад делает нас умнее!»[127]; и «Хотите Нобелевку? Ешьте больше шоколада!»[128]. Работа ученых, однако, не поддерживает ни одно из подобных утверждений, и страны с большим числом лауреатов могли просто отметить это событие увеличенным количеством шоколада (не будем забывать, что коэффициент корреляции симметричен).