Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:160
-
Рейтинг:
-
Ваша оценка:
Автор показывает, что такое причинно-следственная связь, поясняет, почему в ее определении мы часто ошибаемся, как можно принимать верные решения. Благодаря этой книге вы научитесь анализировать информацию, выявлять причинно-следственные связи, объединять прошлое, предсказывать будущее.
Книга будет интересна философам, аналитикам, экономистам, медикам, юристам, начинающим ученым.
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
Согласно этим гипотетическим показателям, студенты с высокими баллами представляют собой комбинацию как лиц с природной одаренностью (которые преуспевают, особо не утруждаясь), так и тех, кто получил лучшие оценки за счет интенсивных занятий. Если воспользоваться только данными из закрашенной области, мы не обнаружим никакой корреляции между переменными; но если применить информацию по всему спектру экзаменационных показателей, созависимость будет сильной (корреляция Пирсона оценки и упорных занятий для закрашенной области равна 0, а для всего набора данных – 0,85).
Оборотная сторона медали – это корреляции, которые мы порой находим между несвязанными переменными, опираясь только на следствия (то есть принимая во внимание только случаи, когда это следствие имеет место). К примеру, получение высокого экзаменационного балла и участие во множестве факультативных мероприятий обеспечивают прием в престижный университет. Значит, данные, взятые только в вузах, покажут корреляцию между высоким баллом и многочисленными факультативами, так как здесь эти показатели чаще всего в наличии.
Подобная тенденция отбора данных довольно типична. Возьмем, к примеру, сайты, опрашивающие посетителей насчет их политических взглядов. В интернете не получится отобрать участников опроса случайно в масштабах всего населения, а данные источников с сильным политическим уклоном искажены еще сильнее. Если посетители конкретной страницы активно поддерживают действующего президента, то результаты по ним, возможно, покажут, что рейтинг главы государства растет каждый раз, когда он произносит важную речь. Однако это показывает лишь то, что есть корреляция одобрения президента и произнесения им речей перед сторонниками (поскольку на вопросы отвечают представители всего населения). Мы рассмотрим и эту, и другие формы трендов (например, смещение по выживаемости) в главе 7 и увидим, как они влияют на результаты анализа экспериментальных данных.
* * *
Важно помнить, что, помимо математических причин, по которым можно распознать ложные корреляции, есть еще наблюдение за данными, позволяющее найти ложные паттерны. Некоторые из когнитивных смещений, заставляющие нас видеть соотношение несвязанных факторов, также сходны с ошибкой отбора. К примеру, предвзятость подтверждения заставляет искать доказательства в пользу определенного убеждения. Иными словами, если вы верите, что лекарство вызывает некий побочный эффект, вы приметесь читать в интернете отзывы тех, кто уже принимал его и наблюдал это действие. Но таким образом вы игнорируете весь набор данных, не поддерживающих вашу гипотезу, вместо того чтобы искать свидетельства, которые, возможно, заставят ее переоценить. Предвзятость подтверждения также может заставить вас отказаться от свидетельств, противоречащих вашей гипотезе; вы можете предположить, что источник сведений ненадежен или что исследование основывалось на ошибочных экспериментальных методах.
Помимо предвзятости с точки зрения доказательств, может случиться ошибка интерпретации аргументов. Если в ходе «неслепого» тестирования нового лекарства доктор помнит, что пациент принимает это средство и считает, что оно ему помогает, то может начать искать признаки его эффективности. Поскольку многие параметры субъективны (например, подвижность или усталость), это может привести к отклонениям в оценке данных индикаторов и логическим заключениям о наличии несуществующих кореляций[118]. Этот пример взят из реального исследования, где доктора, выведенные из слепого метода, сделали вывод об эффективности препарата (мы подробнее обсудим ситуацию в главе 7). Таким образом, интерпретация данных может различаться в зависимости от убеждений, что приводит к отличиям в результатах[119].