Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Вмешательства нередко воспринимаются как золотой стандарт причинного осмысления. Если мы можем выборочно распределять людей по группам (это могут быть пациенты, получающие реальное лечение, или трейдеры, применяющие различные торговые стратегии), это устраняет многие искажающие факторы, а стало быть, человек может выбирать вмешательство или стратегию. Реальность, однако, намного сложнее, поскольку такие воздействия не всегда возможны и могут давать побочные эффекты. К примеру, люди, принимающие препараты для снижения холестерина, менее внимательно следят за диетой.

В этой главе мы рассмотрим, каким образом экспериментальные исследования облегчают выяснение причин; почему эксперименты, утверждающие о найденных причинных зависимостях, не всегда удается воспроизвести; и почему порой так трудно повлиять на одну конкретную вещь. Наконец, мы проанализируем ситуации, когда вмешательства на деле дают ложное представление о базовых причинных зависимостях.

Как вывести причины из вмешательств

Скажем, нужно выяснить, какие удобрения обеспечат наилучший рост вашим посадкам. Вы испытываете подкормку А и замечаете, что розы не цветут. Затем пробуете B. Внезапно ваш сад оживает, и вы исполняетесь уверенности, что это все благодаря B – волшебному удобрению.

Итак, в чем же подвох?

Первый момент, который следует отметить: интересующий вас результат – «наилучший» рост растений – субъективен. Возможно, вы хотите поверить, что B работает лучше, потому что оно обошлось вам вдвое дороже, чем А. Или надеетесь, что дешевое удобрение такое же действенное, как и дорогое. В любом случае, эти убеждения придают различную окраску вашим суждениям об эффекте (вспомните предвзятость подтверждения из главы 3).

Теперь, допустим, мы решаем эти вопросы с помощью количественной оценки. Можно подсчитать число цветов больше 2 дюймов в диаметре и записать их высоту. Но та же схема сада будет применяться в обоих случаях, поэтому вполне допустимо, что отсроченное действие А окажется причиной того, что вы наблюдали при использовании B. Именно в этом часто кроется проблема с изысканиями, где тестируются лекарства, диеты и другие вмешательства. В перекрестном исследовании А и B тестируются последовательно на отдельно взятых участниках.

Имеет значение не только порядок, но и остаточные эффекты от А при оценке B. К примеру, диетическая добавка может оставаться в крови некоторое время после ее получения. В подобных случаях нужен интервал между окончанием одного вмешательства и началом другого, чтобы устранить любые остаточные эффекты от первого. Наконец, поскольку удобрения тестировались не одновременно, возможно, что между двумя периодами и другие факторы также изменились. Что, если в течение второго временного сегмента чаще шел дождь или было больше солнечного света и это обеспечило лучшие условия для роста? Получается, любые улучшения могли стать просто следствиями изменений в промежутке между использованием А и B.

Когда мы вмешиваемся для сравнения причин или их выявления, на самом деле хотим узнать, что случится, если все прочее останется без изменений, когда мы добавим или удалим возможную причину.

Связь между причинами и вмешательствами существует на интуитивном уровне, потому что нередко мы воспринимаем причины как стратегии реализации событий и стремимся выявить именно их. Втайне мы надеемся, что манипулирование поводом позволит управлять и следствием. Одна из проблем при использовании данных наблюдения для поиска причин состоит в том, что порой сложно провести различие между структурой с общей причиной для двух следствий и структурой с цепочкой причин.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий