Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:161
-
Рейтинг:
-
Ваша оценка:
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
К примеру, если мы найдем видимую причинную зависимость между сном и сердцебиением и при этом будем знать, что могут существовать неизмеренные причины обоих факторов, то одной из возможных моделей будет скрытая переменная, которая вызывает оба наблюдаемых фактора. Преимущество в том, что иногда возникают некие общие для всех моделей взаимосвязи, объясняющие имеющиеся данные. Тогда, даже когда есть множество возможных структур, нетрудно вывести некие заключения относительно потенциальных корреляций.
Во всех случаях, однако, уверенность в выводах о каузальных взаимосвязях должна быть пропорциональна убежденности, что нет никакой потенциально неизмеренной причины, а заключение, сделанное на основе данных наблюдения, может стать точкой отсчета для будущих экспериментов, которые подтвердят его или опровергнут.
Репрезентативное распределение
Помимо уверенности, что мы располагаем верным набором переменных, необходимо также знать, что наблюдаемые события отражают истинное поведение системы. По существу, если нет сведений, что наличие тревожной сигнализации становится причиной ограблений, нужно верить, что – при наших данных – ограбления зависят от отсутствия системы сигнализации.
Мы уже изучили несколько ситуаций, когда сведения не были репрезентативными: 1) анализ данных в ограниченном диапазоне не позволил выявить корреляции между интенсивностью учебы и экзаменационными баллами (глава 3); 2) парадокс Симпсона стал причиной исчезновения или обращения вспять причинно-следственных связей между лекарствами и исходом заболеваний в зависимости от того, брались данные агрегированно или изучались отдельно для мужчин и женщин (глава 5).
Также мы видели пример, как можно нивелировать взаимозависимости, чтобы выявлять причинности без корреляций. В главе 3 мы наблюдали две цепочки между занятиями бегом и потерей веса, когда бег давал положительный эффект и отрицательный, поскольку занятия спортом вызывали повышенный аппетит. При неудачном распределении это значит, что мы можем вообще не обнаружить никакой взаимосвязи между пробежками и потерей веса. Поскольку осмысление причинности зависит от наблюдения реальных зависимостей, мы, как правило, вынуждены делать допущение, что такого типа нивелирования нет. Подобное допущение часто называют верностью (речь о видах ассоциации), поскольку данные, не отражающие истинную структуру, на которой все построено, в некотором смысле ей «неверны».
Кое-кто утверждает, что такой тип нарушения связи редок[232], но на деле некоторые системы – к примеру, биологические – структурированы так, что практически гарантируют нарушение. Когда множественные гены продуцируют фенотип, даже если мы возьмем за основу неактивный ген, фенотип по-прежнему будет присутствовать, что приведет к видимой зависимости между причиной и следствием. Многие системы, вынужденные поддерживать равновесие, включают подобного рода резервные причины.
И все же нам даже не нужна точная нивелировка или вообще какая-либо зависимость, чтобы нарушить допущения о верности. Это потому, что на практике большинство вычислительных методов требует выбирать статистический предел, на основании которого зависимость будет принята или отвергнута (здесь используются p-значения или другие критерии). Вероятность следствия не должна быть в точности равна его вероятности под условием причины – просто достаточно близка, чтобы результат оставался в пределах допустимого. Например, вероятность потери веса после пробежки может не равняться вероятности потери веса вообще, без бега, однако может привести к нарушению допущения о верности, если отличие будет незначительным[233].
* * *