Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Рис. 4.2. Объемы ввоза лимонов в США (в тоннах) и смертность на дорогах в США [число летальных случаев на 100 человек]: а) как отношение одной переменной к другой и б) как временная функция

Хотя коэффициент корреляции Пирсона для этих данных составляет –0,98, что означает практически абсолютное отрицательное соотношение, никто почему-то до сих пор не предложил увеличить импорт цитрусовых, чтобы снизить количество погибших на дорогах.

А теперь взглянем, что получится на рис. 4.2 (б), если выстроить график данных по импорту и смертельным случаям в виде временной функции. Выходит, импорт со временем неуклонно падает, а смертность за тот же период растет. Данные на рис. 4.2 также представляют динамический ряд в обратном хронологическом порядке. Но мы можем заменить импорт лимонов любым другим динамическим рядом, падающим во времени (долей рынка Internet Explorer; акваторией арктических вод, покрытой льдом; распространением курения в США), и обнаружить точно такую же зависимость.

Причина в том, что подобные временные ряды не стационарны, а это значит, что их свойства – к примеру, средние значения – со временем меняются. Например, дисперсия свойства может модулироваться: средний объем импорта цитрусовых окажется стабильным, а годовые колебания – нет. Спрос на электроэнергию при двух подсчетах в год может проявить нестационарность, поскольку общая потребность будет, вероятнее всего, со временем расти, а тенденции – зависеть от сезонности. С другой стороны, результаты длинных серий подбрасывания монеток считаются стационарными, поскольку вероятность выпадения орлов или решек в каждой временной точке абсолютно одинакова.

Если на длинном временном горизонте наблюдается одинаковый (или абсолютно противоположный) тренд, некоторые ряды будут коррелировать, но это не значит, что один фактор станет причиной другого. Существует и другой метод поиска корреляций без соответствующей каузальной зависимости. Если цена на все акции в определенной группе за конкретный промежуток времени растет, можно обнаружить корреляцию между этими ценами, даже если дневные тренды совершенно отличаются.

В другом примере, который показан на рис. 4.3, количество диагнозов аутизма растет в том же темпе, что и число кофеен Starbucks[168], поскольку и те и другие показатели растут по экспоненте – но то же справедливо и для многих других временных рядов (ВВП, количество веб-страниц и научных статей). Здесь причинно-следственная связь весьма правдоподобна, но это далеко не всегда так, и можно придумать кучу убедительных историй, объясняя различные корреляции динамических рядов. Если бы я вместо этого взяла, скажем, процент домохозяйств[169] с высокоскоростным интернетом, вряд ли можно было найти убедительные свидетельства взаимосвязи, кроме того, что – уж так случилось – оба фактора растут со временем. Хотя кое-кто мог бы и придумать объяснение их взаимоотношений. Но это всего лишь корреляция, которая легко исчезнет, если мы учтем разную степень детализации данных по времени или сделаем поправку на их нестационарность.

Рис. 4.3. Два нестационарных динамических ряда, которые кажутся коррелирующими только потому, что оба со временем растут по экспоненте

Еще один вид нестационарности – если группа населения, среди которого проводилась выборка, изменяется со временем. В 2013 году Американская кардиологическая ассоциация (American Heart Assosiation, AHA) и Американская коллегия кардиологов (American College of Cardiology, ACC) выпустили новые справочники по борьбе с избытком холестерина вместе с онлайн-калькулятором, чтобы прогнозировать риск инфарктов и инсультов на 10 лет вперед[170]. Однако некоторые исследователи обнаружили, что калькулятор завышает риски на 75–100 %, что может вести к назначению избыточного объема лекарств, потому что рекомендации основаны на уровнях риска для каждого пациента[171].

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий