Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:161
-
Рейтинг:
-
Ваша оценка:
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
Если аккумулируются вдоль другой диагонали, корреляция имеет такую же силу, но другой знак.
Таблица 3.1. Различные комбинации местонахождения и вождения
Однако на основе этих измерений не каждая сильная корреляция будет иметь высокое значение. Применение коэффициента Пирсона предполагает, что это отношение линейно, а значит, если одна переменная (например, рост), увеличивается, другая (например, возраст) также увеличивается, причем с одинаковым темпом. Это не всегда справедливо, поскольку могут встречаться и более сложные, нелинейные отношения. К примеру, если из-за нехватки кофе человек становится вялым (и не способен показать хорошие результаты на экзамене), а избыток кофе его возбуждает (и тоже плохо влияет на результаты), то график, выстроенный на основе некоторых данных, может иметь вид, как на рис. 3.4. Здесь видно повышение балла в диапазоне от 0 до 5 чашек кофе, потом еще одно медленное падение. Хотя корреляция Пирсона для этого примера нулевая, данные показывают четкий паттерн.
Рис. 3.4. Нелинейное отношение (r = 0,000)
Подобный тип отношений показывает неоднозначные результаты при многих методах причинных умозаключений. В последующих главах мы вернемся к этому. Его важно иметь в виду, поскольку он встречается в таких прикладных науках, как биомедицина (например, и недостаток, и передозировка витаминов могут иметь последствия для здоровья) и финансы (например, кривая Лаффера, которая показывает зависимость между доходами государства и динамикой налоговых ставок).
Аналогично, если вес детей всегда увеличивается с возрастом, но экспоненциально (дети растут, и их вес растет все сильнее), корреляция Пирсона будет ниже ожидаемой, так как она работает в линейных зависимостях. Это одна из опасностей, подстерегающая тех, кто бросает данные в «черный ящик» и просто принимает любые полученные результаты, не проводя дальнейших исследований. Поступив так, когда корреляция недооценивается или даже кажется равной нулю, мы упускаем потенциально интересные зависимости.
Это одна из причин, почему нельзя интерпретировать нулевую корреляцию (пирсоновскую или любую другую) как вообще незначимую (существуют и другие причины, например ошибки в измерениях или первичные данные, искажающие результаты). Еще одна важная причина заключается в том, что данные могут не быть репрезентативными с точки зрения исходного распределения. Если бы нам разрешили взглянуть на статистику смертей от гриппа, но предоставили только данные о количестве больных, поступивших в лечебные учреждения, и вызовов скорой помощи, мы наблюдали бы гораздо более высокий процент летальных исходов, чем в масштабах всего населения. Это происходит потому, что люди оказываются в стационаре, как правило, с более тяжелыми случаями или дополнительными заболеваниями (и с высокими шансами смерти от гриппа). Итак, мы снова сравниваем не все исходы, а только статистику для больных или обратившихся к врачам на фоне симптоматики гриппа.
Чтобы проиллюстрировать эту проблему в ограниченном диапазоне, возьмем, к примеру, две переменные: общий экзаменационный балл и часы, потраченные на подготовку. Однако вместо данных по всему спектру оценок за экзамен мы имеем только сведения о лицах, получивших общий балл за письменный и устный тест по математике выше 1400. На рис. 3.5 эта область показана серым цветом.
Рис. 3.5. Закрашенная область представляет ограниченный диапазон данных