Почему - Саманта Клейнберг (2017)

Почему
Писатель книжки общедоступно повествует, то что подобное причинно-следственная взаимосвязь, разъясняет, по какой причине я зачастую заблуждаемся во ее установлении, в базе тот или иной сведений возможно совершать верные заключения также осуществлять результативные постановления. Прочтя книжку, вам обучитесь исследовать сведение также обнаруживать причинно-следственные взаимосвязи, разъяснять далекое прошлое также прогнозировать перспективу. Книжка станет увлекательна специалистам, философам, изыскателям, врачам, экономистам, юристконсультам, новичкам научным работникам, абсолютно всем, кто именно обладает проблема со массивами сведений также желает обучиться опасному мышлению. В российском стиле публикуется в первый раз. Способен единица экспрессо продолжить жизнедеятельность? С кого вам заразились гриппом? Согласно каковым обстоятельствам увеличиваются стоимости в промоакции? Любой один раз, если вам подбираете оптимальную диету, обвиняете кого-в таком случае из-за испортившийые уик-энд либо берете на себя вложение постановления, немаловажно подразумевать, по какой причине совершаются эти либо другие предмета. Непосредственно понимание причинно-следственных взаимосвязей может помочь прогнозировать перспективу, разъяснять далекое прошлое также вторгаться во процесс происшествий.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Цель самого жесткого и подробного обсуждения слабых мест каждого метода не создать впечатление, будто ни один из них не работает, а скорее показать, что ни один метод не будет работать всегда и везде. Вероятностные модели нельзя считать единственным подходом к осмыслению причинности; точно так же контрфактуальность не единственный способ объяснения событий. Кроме того, в различных областях знания эти методы используются самым неожиданным образом. Причинность по Грэнджеру изначально разрабатывалась для финансовых временных рядов, однако применяется в анализе пакетов нейронных импульсов[428]. Байесовские сети создавались для представления вероятностных зависимостей, а используются в моделировании психологических процессов, лежащих в основе причинного осмысления[429]. Ни один метод и ни одна модель не работают всегда; возможно, в поисках решения своей проблемы вам придется выйти за рамки узкоспециальной области.

Если и существует какой-то ответ, то он может быть таким: мы нуждаемся в плюрализме методов. Каждый из них работает в конкретном случае, так что если у вас в наличии лишь один инструмент, которому вы доверяете, рано или поздно вы уткнетесь в его границы. Приложив массу усилий и пролив много пота, вы сможете адаптировать большинство из них к разным сценариям. Правда, это аналогично тому как, скажем, приспособить молоток к переворачиванию блинов на сковороде, прикрепив к нему клейкой лентой металлическую пластинку. Если вам известно о существовании кухонной лопаточки, вы избавитесь от массы разочарований.

В последние годы растет осознание необходимости иметь набор комплементарных методов в противовес поискам панацеи, решающей все проблемы разом[430]. К примеру, Иллари и Руссо (2014) недавно представили подход, который назвали методом причинной мозаики (causal mosaic view). Точно так же, как невозможно понять роль отдельной плитки в мозаичной картине, выбор методик для применения зависит от контекста, то есть от насущной проблемы и заданной цели.

Это вписывается в рамки общей тенденции каузального плюрализма, и ко множеству вещей следует применять такой подход. Можно использовать его для определения причины[431], свидетельств в ее поддержку и сбора фактического материала[432].

Когда мы ставим перед собой практические задачи, нас, как правило, мало заботит метафизика каузальности или природа причин, однако следует помнить о различии между ними. Кто-то согласится, что есть множество типов свойств, на основе которых можно отличить причину от корреляции: к примеру, вероятностные, интервенционистские (воздействующие) и механистические подходы позволяют проникнуть в суть причин. Но, даже если вы сочтете вмешательство единственным способом обосновать причинные утверждения, существуют другие пути, которые могут представить аналогичную фактуру (вспомните разнообразные экспериментальные методы из главы 7).

Точно так же есть множество мер причинной значимости для расстановки приоритетов в рамках различных свойств.

Для решения некоторых задач машинного обучения, таких как оптимизация, существует набор теорем под названием «Бесплатных обедов не бывает» (TANSTAAFL[433]). То есть если метод заточен под один тип проблем, с другими он будет работать хуже, и ни один нельзя назвать наилучшим для всех[434]. Это означает, что нереально провести оптимизацию для устранения всех проблем. Нет способа улучшить одно, не заплатив за это чем-то другим. В этом заключается некоторая трудность, поскольку, начав работу с новой проблемой, мы не знаем, какой метод применить.

Но мы не всегда приступаем к работе, не имея в багаже совсем никаких знаний. Если хоть что-то известно о поставленной проблеме и о том, на какой компромисс мы готовы пойти (к примеру, принять больше ложноотрицательных результатов, чтобы сократить количество ложноположительных), то не понадобится «лучший» метод – просто надо знать, как выбрать один из способов решения конкретной задачи.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий