Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

В книгах говорится, что наука проста: вы строите теорию, сравниваете ее с экспериментом, и если теория не работает, вы ее отбрасываете и строите новую теорию. Здесь у нас есть четкая теория и сотни экспериментов, но мы не можем их сравнить! В истории физики такого положения еще не бывало. Мы временно оказались взаперти и не можем выбраться, пока не придумаем метод вычисления. Нас «завалило» всеми этими стрелочками, как снежным сугробом.

Рис. 85. Когда нейтрон превращается в протон (этот процесс называется бета-распадом), единственное, что изменяется – это «аромат» одного из кварков, d-кварк превращается в w-кварк, что сопровождается вылетом электрона и антинейтрино. Такой процесс происходит довольно медленно, поэтому предположили, что существует промежуточная частица (названная промежуточным W-бозоном) с очень большой массой (порядка 80 000 МэВ) и зарядом –1.

Несмотря на сложности вычислений, мы качественно понимаем многое в квантовой хромодинамике (науке о сильных взаимодействиях кварков и глюонов). Наблюдаемые нами объекты, состоящие из кварков, «бесцветны»: группы из трех кварков содержат по одному кварку каждого «цвета», а кварк-антикварковые пары имеют одинаковую амплитуду быть красно-антикрасными, зелено-антизелеными или синеантисиними. Мы также понимаем, почему кварки никогда не образуются по отдельности – почему мы видим (какой бы ни была энергия протона, ударяющегося о ядро), что вылетают не отдельные кварки, а струи мезонов и барионов (кварк-антикварковых пар и групп из трех кварков).

Квантовая хромодинамика и квантовая электродинамика – это еще не вся физика. Согласно этим теориям кварк не может изменить «аромат»: u-кварк всегда остается u-кварком, d-кварк всегда остается d-кварком. Но Природа иногда поступает по-другому. Существует медленная форма радиоактивности, бета-распад (утечки такой радиоактивности боятся на ядерных реакторах), при которой нейтрон превращается в протон. Поскольку нейтрон состоит из двух d-кварков и одного и-кварка, а протон – из двух и-кварков и одного d-кварка, то один из d-кварков нейтрона превращается в и-кварк (см. рис. 85). Вот как это происходит: d-кварк излучает новую частицу, W-бозон, подобную фотону, которая взаимодействует с электроном и другой новой частицей, антинейтрино (нейтрино, движущимся вспять во времени). Нейтрино – это еще одна частица со спином ½ (как электрон и кварки), но оно не имеет массы и заряда (т. е. не взаимодействует с фотонами). Оно не взаимодействует также с глюонами, а только с W-бозонами (см. рис. 86).

W-бозон является частицей со спином 1 (как фотон и глюон), он изменяет «аромат» кварков и переносит их заряд: d-кварк с зарядом – ⅓ превращается в u-кварк с зарядом +⅔ – разница зарядов равна –1. («Цвет» кварка при этом не меняется.) Поскольку W – бозон переносит заряд –1 (и его античастица W+ переносит заряд +1), он взаимодействует также с фотонами. Бета-распад протекает гораздо медленнее, чем взаимодействие фотонов и электронов, поэтому считается, что W-бозон в отличие от фотона и глюона должен иметь очень большую массу (порядка 80 000 МэВ). Сам по себе W-бозон не наблюдается, поскольку для «выбивания» частицы с такой большой массой требуется очень большая энергия[30].

Рис. 86. С одной стороны, W-бозон взаимодействует с элек-троном и нейтрино, и с другой – с d-кварком и u-кварком

Есть и другая частица, которую можно считать нейтральным W-бозоном, она называется «Z 0-бозон». Z 0-бозон не меняет заряд кварка, но взаимодействует с d-кварком, u-кварком, электроном или нейтрино (см. рис. 87). Это взаимодействие носит вводящее в заблуждение название «нейтральные токи». Его открытие несколько лет назад вызвало большое волнение.

Рис. 87. Когда ни у одной из частиц заряд не меняется, W-бозон тоже не заряжен (он в этом случае называется Z0-бозоном). Такие взаимодействия называются «нейтральными токами». Здесь показаны две возможности.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий