КЭД – странная теория света и вещества - Ричард Фейнман (2017)
-
Год:2017
-
Название:КЭД – странная теория света и вещества
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:О. Л. Тиходеева, С. Г. Тиходеев
-
Издательство:АСТ
-
Страниц:72
-
ISBN:978-5-17-112577-6
-
Рейтинг:
-
Ваша оценка:
КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги
У кварков имеется добавочный тип поляризации, не связанный с геометрией. Простаки-физики, не способные возвыситься до изобретения прекрасных греческих слов, назвали этот тип поляризации неудачным словом «цвет». Этот «цвет» не имеет никакого отношения к цвету в обычном смысле. В данный момент времени кварк может находиться в одном из трех состояний, или «цветов» – К, 3 или С (догадываетесь, что означают эти сокращения?). При поглощении или испускании глюонов «цвет» кварка может измениться. Глюоны бывают восьми различных сортов, в зависимости от того, какие «цвета» они связывают. Например, если красный кварк становится зеленым, он испускает красно-антизеленый глюон – глюон, который забирает у кварка красный цвет и дает зеленый («антизеленый» означает, что глюон переносит зеленый цвет в противоположном направлении). Такой глюон может быть поглощен зеленым кварком, который станет после этого красным (см. рис. 83). Имеются восемь различных глюонов, например, красно-антикрасный, красно-антисиний, красно-антизеленый и т. д. (вы могли бы подумать, что их должно быть девять, но по техническим причинам один отсутствует). Теория не слишком сложная. Общее правило гласит: глюон взаимодействует с тем, что имеет «цвет», – требуется лишь немного бухгалтерии, чтобы проследить, куда переносятся «цвета».
Это правило создает, однако, интересную возможность: глюоны могут взаимодействовать с другими глюонами (см. рис. 84). Например, зелено-антисиний глюон, встретившись с красно-антизеленым, превращается в красно-антисиний глюон. Глюонная теория очень проста – вы рисуете диаграмму и расставляете «цвета». Величины взаимодействий во всех диаграммах определяются глюонной константой связи g.
Формально глюонная теория не сильно отличается от квантовой электродинамики. Ну а как она соотносится с экспериментом? Например, как наблюдаемая величина магнитного момента протона соотносится с теоретической?
Рис. 83. Глюонная теория отличается от электродинамики тем, что глюоны взаимодействуют с «цветными» частицами (которые могут находиться в одном из трех возможных состояний – «красном», «зеленом» и «синем»). Здесь красный и-кварк пре-вращается в зеленый, испуская красно-антизеленый глюон, поглощаемый затем зеленым кварком, который превращается в красный. (Если «цвет» переносится вспять во времени, к его названию добавляется приставка «анти»).
Рис. 84. Поскольку глюоны сами «окрашены», они могут взаимодействовать друг с другом. На рисунке показано, как зелено-антисиний глюон взаимодействует с красно-антизеленым и получается красно-антисиний глюон. Глюонную теорию лег-ко понять – вы должны просто следить за «цветами».
Эксперименты очень точны – они показывают, что магнитный момент равен 2,79275. Теория же дает в лучшем случае 2,7±0,3 – если вы достаточно оптимистично оцениваете точность своих расчетов. То есть погрешность равна 10 %, что в 10 000 раз ниже точности эксперимента! У нас имеется простая, четкая теория, которая должна объяснять все свойства протонов и нейтронов, но мы не можем ничего посчитать при помощи этой теории, потому что математика слишком сложна для нас. (Вы можете догадаться, над чем я работаю, но у меня ничего не получается.) Причина, по которой мы ничего не можем посчитать с приличной точностью, заключается в том, что константа связи для глюонов gзначительно превосходит константу связи для электронов. Диаграммы с двумя, четырьмя и даже шестью взаимодействиями не просто маленькие поправки к основной амплитуде – они вносят существенный вклад, которым нельзя пренебречь. Поэтому получается так много стрелок для различных вариантов, что мы не можем упорядочить их разумным образом и найти, чему равна результирующая стрелка.