Момент истины. Почему мы ошибаемся, когда все поставлено на карту, и что с этим делать? - Сайен Бейлок (2010)
-
Год:2010
-
Название:Момент истины. Почему мы ошибаемся, когда все поставлено на карту, и что с этим делать?
-
Автор:
-
Жанр:
-
Оригинал:Английский
-
Язык:Русский
-
Перевел:Михаил Попов
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:160
-
ISBN:978-5-00057-724-0
-
Рейтинг:
-
Ваша оценка:
Момент истины. Почему мы ошибаемся, когда все поставлено на карту, и что с этим делать? - Сайен Бейлок читать онлайн бесплатно полную версию книги
Разумеется, указанное выше нынешнее соотношение 2,8 : 1 означает, что мальчики почти втрое превосходят девочек по количеству набравших высшие баллы на SAT-M. Но прежде чем придавать этой очевидной разнице слишком большое значение, отступим на шаг назад и признаем неоспоримый факт. Соотношение 2,8 : 1 обусловливает определенные выводы только в том случае, если тесты вроде SAT-M непредвзято и ровно оценивают математические способности мальчиков и девочек. Если по какой-то причине тесты не могут оценить уровень математических способностей у представителей разных полов, то сделанные на их основании выводы ошибочны. И при этом конкретное соотношение роли не играет. Оказывается, есть вполне убедительные доказательства того, что тесты SAT-M неточно отражают способности детей.
Эти доказательства часто игнорируют. Тесты SAT-M занижают реальные ожидаемые математические успехи, которых в дальнейшем достигают девочки58. Проще говоря, когда совмещают результаты этих тестов с реальными успехами школьников в колледжах и университетах, то оказывается, что девушки продолжают получать по математике более высокие баллы, чем юноши. Именно так: одинаково высокие результаты тестов с точки зрения перспектив у девочек недооцениваются, а у мальчиков — переоцениваются.
Почему так происходит? Одна из причин в том, что в ходе тестов SAT-M математически одаренные девочки и мальчики применяют разные методы решения задач59. Девочки используют навыки, которые они освоили в школе. В результате они часто лучше мальчиков решают те задачи, где успех приносит пошаговое применение известных математических приемов. А мальчики лучше справляются с нестандартными задачами, требующими необычных методов. Они больше, чем девочки, склонны к сокращению путей решения. На таких экзаменах, как SAT-M, где нужно решить много задач за относительно короткое время, это дает определенное преимущество.
В качестве примера рассмотрите задачу из Американского математического первенства (АМС) 1998 года.
Данная марка кофе готовится путем смешивания марок «Колумбийский» по 8 долларов за полкилограмма и «Эспрессо» по 3 доллара за полкилограмма. Если смесь стоит 5 долларов за полкилограмма, то сколько килограммов кофе марки «Колумбийский» нужно, чтобы приготовить 25 кг смеси?
А) 10; B) 12,5; C) 15; D) 17,5; E) 20.
Ответ: 10
Решить эту задачу при помощи стандартных алгебраических формул, изученных в школе, сложно. Помимо прочего, они требуют много времени и иногда приводят к простым математическим ошибкам. Но вы можете сократить путь решения. Логика подсказывает, что более половины смеси должен составлять более дешевый эспрессо, потому что цена конечного продукта (5 долларов) за полкило составляет менее половины суммы стоимостей двух компонентов (8 + 3) : 2 = 5,5 доллара, а стоимость конечного продукта — 5 долларов за полкило. Мы можем прийти к выводу, что только один вариант ответа правильный, потому что все остальные больше или равны половине от 25 кг (12,5).
Примечательно, что склонность мальчиков опираться на гибкие подходы к решению задач характерна не только для учеников старшей школы. Она проявляется еще в начальных классах. Хотя в целом в начальной школе различия в математических способностях между мальчиками и девочками еще не так заметны, наблюдения за поведением маленьких учеников показывают, что девочки чаще решают задачи традиционными способами, а мальчики нередко прибегают к нестандартным. Например, когда в начальной школе девочек просят сложить 38 и 26, они чаще сначала складывают единицы (8 + 6), запоминают 1 десяток, прибавляют 1 к показателям десятков 3 и 2 и наконец получают сумму 64. А мальчики зачастую решают этот пример быстрее, по сокращенному пути: складывают 20 и 30, получают 50, затем к 50 прибавляют 8, затем еще 6. Получают те же 6460.