Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Помимо сложности реакции (6), главная проблема с ее использованием для производства алюминия заключается в том, что она очень эндотермическая. Для получения одного килограмма алюминия нужно затратить около 20 кВт. ч электрической энергии. Вот почему земные заводы по производству алюминия находятся в районах, где энергия очень дешева, например в северо-западной части тихоокеанского побережья США. На Марсе в период строительства базы энергия будет дорогой. При потребности в 20 кВт. ч на килограмм ядерный реактор мощностью в 100 кВт позволит производить всего около 123 килограмма алюминия в день. Поэтому основным материалом, используемым для создания высокопрочных конструкций на Красной планете, станет вовсе не он – а сталь. Из-за меньшей силы тяжести на Марсе она будет весить примерно столько же, сколько алюминий на Земле. Сам же алюминий придется использовать лишь там, где он необходим по причине своей высокой электропроводности и/или легкости, например при изготовлении электропроводки или компонентов приборов для летательных аппаратов.

Кремний

В современную эпоху кремний стал, возможно, третьим по важности металлом после стали и алюминия – ведь это ключевой материал для производства всей электроники. Он будет еще более значимым на Марсе, потому что, добывая кремний, мы сможем производить фотоэлектрические панели, тем самым постоянно увеличивая добычу электричества на базе. Сырье для этого – диоксид кремния (SiO2) – по массе составляет почти 45 % от марсианской коры. Чтобы получить кремний, нужно смешать его диоксид с углеродом и нагреть в электропечи.

SiO2 + 2С → Si + 2СО (7)

Опять же, мы видим, что восстанавливающий элемент, углерод, – это побочный продукт системы производства топлива на марсианской базе. Реакция (7) высоко эндотермическая, хотя далеко не такая затратная, как реакция восстановления оксида алюминия (6), а расходы энергии на нее даже отдаленно не сопоставимы с таковыми в случае (6).

Кремний как продукт реакции (7) достаточно хорош для некоторых целей. Например, его можно использовать, чтобы сделать карбид кремния, весьма термостойкий материал (он использовался в обшивке, защищавшей шаттлы от перегрева при входе в атмосферу). Однако очевидно, что даже малейшее количество гематита, присутствующего в исходном сырье для реактора, также будет восстановлено, в результате чего в кремнии окажутся железные примеси. Для получения чистейшего кремния, достаточно хорошего для микросхем и солнечных панелей, необходим еще один шаг: купание полученного загрязненного кремниевого продукта в горячем газообразном водороде. В результате кремний превратится в силан (SiH4). При температуре не ниже комнатной он представляет собой газ, так что его легко можно отделить от гидридов других металлов, все из которых являются твердыми. Затем нужно перегнать силан в другой реактор и разложить при высоких температурах – получится чистый кремний и свободный водород, который снова пойдет на очистку. Такой кремний уже можно легировать фосфором или другими примесями, чтобы произвести именно тот полупроводниковый прибор, который требуется.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий