Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)
-
Год:2001
-
Название:Курс на Марс. Самый реалистичный проект полета к Красной планете
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. М. Зубарева
-
Издательство:Эксмо
-
Страниц:242
-
ISBN:978-5-699-75295-9
-
Рейтинг:
-
Ваша оценка:
Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги
Марсианская металлургия
Возможность изготавливать металлы имеет фундаментальное значение для любой технологический цивилизации. Марс предоставляет все необходимые ресурсы. На самом деле в этом отношении он значительно богаче, чем Земля.
Сталь
Вне всяких сомнений самый доступный промышленный металл на Марсе – железо. А наиболее широко использующаяся на Земле железная руда – гематит (Fe203). Она настолько распространена на Марсе, что задает цвет Красной планеты. Восстановление гематита до чистого железа – процесс простой и, согласно Ветхому Завету и Гомеру, практикуется на Земле около трех тысяч лет. Есть как минимум два подхода, пригодных для использования на Марсе. Первый, как уже обсуждалось ранее в этой главе, основан на применении отработанного монооксида углерода – реакция (1), описанная выше, – из реактора ОКВГ.
Fe2O3 + 3 СО → 2Fe + 3CO2 (4)
В другом процессе используется водород, получаемый электролизом воды.
Fe2О3 + 3Н2 → 2Fe + 3Н2О (5)
Реакция (4) немного экзотермическая, а реакция (5) – слабо эндотермическая, так что после нагревания реакторов до начальных условий ни одному из них не потребуется много энергии для запуска. В случае реакции (5) необходимый водород можно получить путем электролиза воды, которая будет отходом других реакций, так что единственным новым сырьем для системы является гематит. Углерод, марганец, фосфор и кремний, четыре основных легирующих элемента для стали, очень распространены на Марсе. Дополнительные легирующие элементы, например хром, никель и ванадий, также имеются в солидных количествах. Таким образом, сразу после выработки железа его тут же можно будет сплавить с соответствующими количествами перечисленных элементов для получения практически любого желаемого типа углеродистой или нержавеющей стали.
Рис. 7.5. Создание базы на Марсе (рисунок Роберта Мюррея, «Марсианское общество»)
Широкая доступность на марсианской базе угарного газа – он будет отходом реакторов ОКВГ – открывает некоторые интересные перспективы для новых методов низкотемпературного литья. Например, окись углерода может быть объединена с железом при температуре 110 °C для получения карбонила железа (Fe(CO)5), который при комнатной температуре представляет собой жидкость. Карбонил железа можно вылить в форму а затем нагреть примерно до 200 °C, после чего он начнет разлагаться. Останется чистое и очень прочное железо, в то время как окись углерода выйдет в виде газа, что позволит использовать ее повторно. Также можно складывать железо слоями путем разложения паров карбонила, что позволит производить желаемые полые объекты любой сложной формы. Аналогичные карбонилы могут быть образованы окисью углерода и никелем, хромом, осмием, иридием, рутением, рением, кобальтом и вольфрамом. Эти соединения разлагаются при несколько различных условиях, что позволяет разделить смесь карбонилов металлов на чистые компоненты путем последовательного разложения [37].
Алюминий
Второй металл после стали по важности для общего пользования – это алюминий. Он довольно распространен на Марсе – примерно 4 % материала поверхности планеты по массе. К сожалению, там, как и на Земле, он большей частью представлен в виде очень сильно связанного оксида – оксида алюминия, или глинозема (Al2О3). Для того чтобы получить металл на Земле, глинозем растворяют в расплавленном криолите при 1000 °C, а затем подвергают электролизу с угольными электродами, которые расходуются в процессе, в то время как криолит остается неповрежденным. На Марсе угольные электроды могут быть получены путем пиролиза метана в реакторе Сабатье, который уже описывался в главе 6.
Al2О3 + 3С → 2Al + 3СО (6)