Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Впрочем, если вы не хотите возить грунт туда-сюда, альтернативой будет доставка нагревателя к нужной области Марса. Один из предложенных способов заключается в том, чтобы иметь мобильную печь, способную, находясь в движении, загружать в себя грунт, прогревать его, конденсировать пар и выбрасывать сухую породу [33]. Вы, наверное, не захотели бы использовать для такой системы ядерный реактор, а вместо этого предпочли бы радиоизотопный термоэлектрический генератор (РТГ) вроде того, что использовался на «Вояджерах», «Викингах», «Галилее» и других космических аппаратах, отправившихся исследовать окраины Солнечной системы. Стандартный РТГ выдает 300 Вт электроэнергии, которых достаточно, чтобы привести в движение грузовик, а также 6 кВт отходящего тепла, что позволяет получать 56 килограммов воды в день из 4 %-ного исходного сырья. Такое устройство было бы весьма удобно для небольших экипажей, работающих на выезде, или как дополнительная часть оборудования для первых разведывательных миссий (56 килограммов ежедневно в течение одной 500-дневной миссии «Марс Директ» – это в конечном итоге запасы воды до 28 тонн), но его выход весьма мал по сравнению с потребностями большой развивающейся марсианской базы. Конечно, мы могли бы производить необходимую воду, используя множество таких устройств, но все эти РТГ дорого нам обойдутся, к тому же мы по-прежнему будем перелопачивать много грунта, и еще надо учитывать износ оборудования. Есть ли более изящное решение?

Один из таких способов – использование микроволнового устройства для нагревания грунта. Вода в таком случае будет испаряться и подниматься в виде пара. Целиком конструкция может представлять собой что-то вроде поставленного на шасси тента с подвижной полой внизу, как щеткой захватывающей грунт вокруг; последняя должна быть достаточно плотной и герметичной, чтобы удерживать водяной пар, пока он не осядет на стенках тента. Преимущество этой схемы заключается в том, что здесь не нужно копать грунт, и более того, микроволновые печи расходуют большую часть своей энергии на нагрев одной лишь воды, а не грунта. К сожалению, поднимающийся пар будет передавать тепло почве, так что оно окажется израсходовано впустую (впрочем, не в такой степени, как в системе одного только теплового нагрева). Однако проблема состоит в том, что питать микроволновую печь следует от источника электрической, а не, например, тепловой энергии. 6000 Вт отработанного тепла, произведенного РТГ, не получится использовать для приведения системы в действие, придется довольствоваться 300 Вт электрической мощности аппарата. Таким образом, даже если 1 Вт мощности микроволнового устройства окажется вдвое эффективнее тепловой энергии при добывании воды из грунта, вы все равно получите только одну десятую часть запланированного количества воды, потому что тепловая энергия в двадцать раз доступнее. Впрочем, если концентрация воды высока, а грунт слишком тверд, чтобы его раздробить и загрузить в печь (как в случае с вечной мерзлотой), микроволновая система будет работать лучше, чем мобильный экскаватор, хотя выход по-прежнему останется довольно низким. Предположим, мы используем такую систему для обработки запаса вечной мерзлоты, содержащей по весу 30 % воды. На извлечение каждого ее килограмма понадобится около 1 кВт. ч электрической мощности. Так, в течение марсианского сола (24,6 земного часа) передвижной микроволновый аппарат с 300-ваттным РТГ сможет добыть около 7,4 килограмма воды. Единственный способ улучшить производительность – применить намного больше энергии, например подключив устройство с помощью длинного кабеля к ядерному реактору базы и добавив 100 кВт. В этом случае удастся произвести 2,2 тонны воды в день, но аппарат потеряет мобильность.

Рис. 7.4. Мобильные методы извлечения воды из марсианского грунта: колесный комбайн, поглощающий почву (слева вверху); мобильная микроволновая система с полой (по центру); переносной купол с конденсатором (внизу) (иллюстрация Майкла Кэрролла)

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий