Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)
-
Год:2001
-
Название:Курс на Марс. Самый реалистичный проект полета к Красной планете
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. М. Зубарева
-
Издательство:Эксмо
-
Страниц:242
-
ISBN:978-5-699-75295-9
-
Рейтинг:
-
Ваша оценка:
Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги
В марсианском грунте есть некоторое количество воды. Мы это точно знаем, потому что случайные образцы, взятые с поверхности на глубине до 10 сантиметров на обеих посадочных площадках «Викинга», содержали по весу около 1 % воды. Это не так уж плохо, но на самом деле тест был не совсем достоверным, потому что грунт на поверхности Марса самый сухой. Образцы нагревали в течение всего 30 секунд до температуры 500 °C и, более того, перед экспериментом их хранили в открытом сосуде при 15 °C в течение нескольких дней. Так как эта температура намного выше, чем средняя марсианская, очень высоки шансы, что значительное количество воды из образцов испарилось. На основании результатов «Викингов» можно с уверенностью предположить, что среднестатистический марсианский грунт содержит не менее 4 % воды. Впоследствии это предположение подтвердил орбитальный зонд «Марс Одиссей». А некоторые грунты, вероятно, будут еще более влажными. Так, на Марсе есть соли, обычно содержащие до 10 % химически связанной воды, которая может выделяться при нагревании. Распространенные на Красной планете глины тоже отлично адсорбируют воду. Например, в SNC-метеоритах была найдена смектитовая глина, также известная как «разбухающая», потому что она способна поглотить несколько процентов воды по отношению к своему весу. Во многих SNC-метеоритах также был найден минеральный гипс (CaSO4 × 2Н2O). Вполне вероятно, что он довольно распространен на Марсе, потому что серы и кальция на обеих посадочных площадках «Викингов» обнаружилось гораздо больше (в сорок и в три раза соответственно), чем в среднем в почвах на Земле. Гипс может включать более 20 % воды по весу.
Рис. 7.3. Система для извлечения воды из марсианского грунта: грузовик, печь и отвал шлака (рисунок Майкла Кэрролла)
Будь то 4 или 20 %, чтобы получить воду из почвы, понадобится только тепло. Осуществить нагрев можно одним из двух способов: принести либо почву к нагревателю, либо нагреватель к почве. Первый вариант показан на рис. 7.3. Грузовик, нагруженный некоторым количеством относительно влажного грунта, сваливает его на конвейерную ленту, ведущую к разогретой до 500 °C (или около того) печи, в результате чего выделяется адсорбированная вода. Пар, полученный таким образом, собирают в конденсаторе, а обезвоженный материал выбрасывают. Полученные кучи шлака, конечно, будут создавать некоторое неудобство, но в целом энергетика этой системы не так уж плоха. Если в качестве исходного сырья использовать грунт с 4 %-ной влажностью, потребуется около 3 кВт. ч тепла на каждый килограмм воды [32]. При таком расходе реактор на 100 кВт сможет производить 900 килограммов воды в сутки, если его электроэнергия питает печь, или до 18 тонн воды в день, если потерянное тепло реактора будет использовать для обжига. (Термоэлектрические генераторы – современные космические ядерные источники питания – используют для преобразования в электричество только 5 % энергии, остальные 95 % выходят как «отработанное тепло».)
Увы, остается еще отвал обезвоженного грунта, с которым надо что-то делать. Мы могли бы произвести 18 тонн воды в день, но одновременно с тем обзавелись бы 462 тоннами шлака. Это не так много, около 12 кубометров, или шесть грузовиков. Вполне вероятно, что мы найдем сухой породе какое-то применение, а если нет, то просто сбросим его в соседний кратер.