Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Предположим, что человек вдыхает 5 галлонов (или 19 литров) воздуха в минуту. В этом случае каждый астронавт, использующий такой «акваланг» низкого давления, будет расходовать 1,3 килограмма кислорода в ходе четырех часов ВКД. Метанольно-кислородный топливный элемент мог бы отводить часть отработанного кислорода и использовать его в сочетании с небольшим количеством метанола, для того чтобы снабжать астронавта в скафандре энергией. Таким образом, если два человека будут по одному разу в день покидать ровер, дважды меняя атмосферу в кабине, на это уйдет 12 килограммов кислорода. Если использовать машину в таком темпе ежедневно на протяжении 600-дневного пребывания на поверхности Марса, на этой уйдет 7 тонн кислорода. Такие расходы окажутся обременительными, если кислород будет привезен с Земли. Если же производить его на Марсе, потребуется всего 24 дня работы ЗПТМ с реактором мощностью 60 кВт.

Изготовление топлива на Марсе

К этому моменту вам должно быть очевидно, что возможность добраться до Марса с приемлемыми затратами и начать делать что-то осмысленное, оказавшись там, зависит главным образом от одной ключевой технологии – производства топлива из марсианской атмосферы. Но возможно ли это? Несомненно, да. На самом деле все химические процессы, предусмотренные в программе «Марс Директ», массово используются на Земле на протяжении уже более века.

Первый шаг в производстве топлива – это получение исходных материалов. Так как водород в двухкомпонентной смеси занимает лишь около 5 % от общей массы топлива, его лучше импортировать с Земли. При хорошей многослойной изоляции баков можно добиться, чтобы в месяц выкипало менее 1 % жидкого водорода без какого-либо активного охлаждения (перелет между планетами займет в целом шесть-восемь месяцев). Поскольку водородное сырье не будут сразу подавать в двигатель, его можно загустить до гелеобразного состояния небольшим количеством метана для предотвращения утечек. Это также снизит выкипание (на целых 40 %), подавляя конвекцию внутри резервуара.

Единственные виды сырья, которые потребуются нам на Марсе для производства топлива, – это углерод и кислород, наиболее распространенные элементы в марсианской атмосфере, на 95 % состоящей из углекислого газа. Они будут доступны в любой точке планеты так же свободно, как воздух на Земле. Атмосферное давление, измеренное в двух местах посадки «Викингов», варьируется в течение марсианского года от 7 до 10 мбар (1 бар – это атмосферное давление на Земле на уровне моря, или 14,7 фунта на квадратный дюйм; 10 мбар составляют 1 % от атмосферного давления на Земле на уровне моря), а среднее за год значение 8 мбар наблюдалось на месте посадки «Викинга-1» – в высшей точке долины Хриза. Насосы, способные удерживать газ под таким давлением и сжимать его до пригодного для работы давления в 1 бар или более, впервые были продемонстрированы английским физиком Фрэнсисом Хоксби в 1709 году, а сегодняшние аналоги способны на куда большее. Тем не менее, чтобы сжать диоксид углерода, насос не нужен. Для этого можно использовать всасывающую подстилку вроде губки, впитывающей углекислый газ. Все, что будет нужно сделать, – это взять емкость и засыпать туда либо активированный уголь, либо цеолит, а затем оставить ее ночь в открытом виде на поверхности Марса. При ночных заморозках (-90 °C) подстилка впитает до 20 % диоксида углерода от своего веса. Затем, когда наступит день, нужно нагреть поглощающий слой до 10 °C или близкого значения, и газ начнет выделяться. Таким способом можно получать диоксид углерода под очень высоким давлением, практически не используя подвижных конструкций и ограничившись очень малыми расходами энергии.

Можно использовать отходящее тепло, генерируемое какими-нибудь устройствами, для управления процессом дегазации. В моей лаборатории в «Мартин Мариетта» мы построили такую систему, и она работала очень хорошо.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий