Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)
-
Год:2001
-
Название:Курс на Марс. Самый реалистичный проект полета к Красной планете
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:А. М. Зубарева
-
Издательство:Эксмо
-
Страниц:242
-
ISBN:978-5-699-75295-9
-
Рейтинг:
-
Ваша оценка:
Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги
А что насчет системы жизнеобеспечения ровера? На поверхности Марса на тех же ЗПТМ можно легко производить неограниченное количество кислорода, используя диоксид углерода, из которого атмосфера Марса состоит на 95 %. Однако азот и аргон в сумме составляют всего около 4,3 % марсианской атмосферы, и, следовательно, найти буферный газ для дыхания будет гораздо сложнее. (Вы можете использовать диоксид углерода в качестве буферного газа для двигателей, но не для человека. В концентрациях выше 1 % он становится токсичным.) Поэтому крайне важно, чтобы жилые модули и герметичные роверы работали при минимально возможных парциальных давлениях буферного газа. Для жилого модуля на поверхности Марса я рекомендую давление в 5 фунтов на квадратный дюйм[23] (3,5 фунта кислорода, 1,5 фунта азота), такое давление использовали астронавты НАСА в долгосрочных экспедициях на станциях «Скайлэб» в 1970-е годы.
Экипажи программы «Аполлон», однако, проводили двухнедельные миссии в атмосфере без буферного газа, содержавшей 5 фунтов на квадратный дюйм кислорода. Поскольку самые длительные поездки на роверах тоже будут длиться около двух недель, я рекомендую для герметичных роверов именно такой вариант. У него есть серьезные преимущества. Для ровера с низким давлением не нужен шлюз, поэтому машина окажется значительно легче, чем при конструировании другого варианта. Когда члены экипажа захотят покинуть ровер и заняться внекорабельной деятельностью (ВКД), они просто наденут скафандры, сидя в его кабине, затем стравят оттуда кислородную атмосферу, откроют люк и выйдут наружу. Поскольку в дыхательной смеси не будет азота, разгерметизация займет очень мало времени: без азота в крови люди не заработают кессонную болезнь. Если принять объем внутренней части ровера за 10 кубических метров, тогда каждый раз во время разгерметизации будет теряться 3,3 килограмма кислорода. Если бы часть его мы могли закачать в цилиндр под давлением, потери удалось бы и вовсе свести к минимуму, но в любом случае они легко восполняются благодаря местному производству кислорода на базе.
Ровер с атмосферой низкого давления позволит использовать скафандры для ВКД под низким давлением (3,8 фунта на квадратный дюйм кислорода, без буферного газа, как в миссиях «Аполлон») без предварительного уменьшения количества азота в крови. Этот вариант скафандра будет самым легким и гибким из всех возможных и, таким образом, позволит повысить качество полевых исследований на поверхности Марса. (Скафандры, использовавшиеся на шаттлах, представляли собой своего рода миниатюрные космические корабли, такие конструкции слишком тяжелы для использования на Марсе.) Поскольку кислород будет возобновляемым ресурсом, мне представляется наиболее удобной прямоточная система, где выдыхаемый воздух выбрасывается непосредственно в окружающую среду (как в акваланге), – она сильно упростит дизайн скафандра. Это не только будет полезно для уменьшения его массы, но и существенно повысит его надежность, возможность многократной эксплуатации и удобство. Все это позволит использовать на поверхности Марса не десятки, а тысячи скафандров.