Knigionline.co » Компьютеры » Базы данных конспект лекций

Базы данных конспект лекций - Коллектив авторов (2007)

Базы данных конспект лекций
Конспект лекций не противоречит требованиям Государственного образовательной нормы высшего профессионального образования РФ и нужен для овладения студентами вузов специального предмета «База данных».
Четкое и лаконичное изложение материала, осознанный отбор важных тем позволяют качественно и быстро подготовиться к экзаменам по данному предмету, семинарам и зачетам.

Базы данных конспект лекций - Коллектив авторов читать онлайн бесплатно полную версию книги

2) операция правого внешнего соединения определяется подобным образом операции левого внешнего соединения и имеет следующий вид:

r1(S1) →× Pr2(S2) ≔ (r1 × Pr2) ∪ [(r2 \ (r1 × Pr2) [S2]) × {∅(S1)}];

Эти две производные операции имеют всего два свойства, достойные упоминания.

1. Свойство коммутативности:

1) для операции левого внешнего соединения:

r1(S1) →× Pr2(S2) ≠ r2(S2) →× Pr1(S1);

2) для операции правого внешнего соединения:

r1(S1) ←× Pr2(S2) ≠ r2(S2) ←× Pr1(S1)

Итак, мы видим, что свойство коммутативности не выполняется для этих операций в общем виде, но при этом операции левого и правого внешнего соединения взаимно обратны друг другу, т. е. выполняется:

1) для операции левого внешнего соединения:

r1(S1) →× Pr2(S2) = r2(S2) →× Pr1(S1);

2) для операции правого внешнего соединения:

r1(S1) ←× Pr2(S2) = r2(S2) ←× Pr1(S1).

2. Основным свойством операций левого и правого внешнего соединения является то, что они позволяют восстановить исходное отношение-операнд по конечному результату той или иной операции соединения, т. е. выполняются:

1) для операции левого внешнего соединения:

r1(S1) = (r1 →× Pr2) [S1];

2) для операции правого внешнего соединения:

r2(S2) = (r1 ←× Pr2) [S2].

Таким образом, мы видим, что первое исходное отношение-операнд можно восстановить из результата операции левого правого соединения, а если конкретнее, то применением к результату этого соединения (r1 × r2) унарной операции проекции на схему S1, [S1].

И аналогично второе исходное отношение-операнд можно восстановить применением к результату операции правого внешнего соединения (r1 × r2) унарной операции проекции на схему отношения S2.

Приведем пример для более подробного рассмотрения работы операций левого и правого внешних соединений. Введем уже знакомые нам отношения r1(S1) и r2(S2) с различными схемами отношения:

r1(S1):

r2(S2):

Несоединимый кортеж левого отношения-операнда r2(S2) – это кортеж {d, 4}. Следуя определению, именно им следует дополнить результат внутреннего соединения двух исходных отношений-операндов.

Условие внутреннего соединения отношений r1(S1) и r2(S2) также оставим прежнее: P = (b1 = b2). Тогда результатом операции левого внешнего соединения будет следующая таблица:

r1(S1) →× Pr2(S2):

Действительно, как мы можем видеть, в результате воздействия операции левого внешнего соединения, произошло пополнение результата операции внутреннего соединения несоединимыми кортежами левого, т. е. в нашем случае первого отношения-операнда. Пополнение кортежа на схеме второго (правого) исходного отношения-операнда по определению произошло при помощи Null-значений.

И аналогично результатом правого внешнего соединения по тому же, что и раньше, условию P = (b1 = b2) исходных отношений-операндов r1(S1) и r2(S2) является следующая таблица:

r1(S1) ←× Pr2(S2):

Действительно, в этом случае пополнять результат операции внутреннего соединения следует несоединимыми кортежами правого, в нашем случае второго исходного отношения-операнда. Такой кортеж, как не трудно видеть, во втором отношении r2(S2) один, а именно {2, y}. Далее действуем по определению операции правого внешнего соединения, дополняем кортеж первого (левого) операнда на схеме первого операнда Null-значениями.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий