Яндекс для всех - Абрамзон М. Г (2007)
-
Год:2007
-
Название:Яндекс для всех
-
Автор:
-
Жанр:
-
Язык:Русский
-
Издательство:БХВ-Петербург
-
Страниц:245
-
ISBN:978-5-9775-0144-6
-
Рейтинг:
-
Ваша оценка:
Для людей которые только начинают пользоваться сетью Интернет.
Яндекс для всех - Абрамзон М. Г читать онлайн бесплатно полную версию книги
Полнотапоиска характеризуется отношением количества найденных по запросу документов к общему количеству документов в Интернете, соответствующих данному запросу. Если по запросу "кристаллическая решетка" будет найдено 150 документов, а общее количество документов в Интернете, соответствующее этому запросу, составляет 1000, то полнота поиска составит 0,15. (Эта величина приблизительная, поскольку неизвестно точно, сколько же на самом деле существует в Интернете страниц, отвечающих условию поиска.) Чем более полно проанализированы и занесены в Индекс документы, тем выше будет показатель полноты поиска.
Точностьпоиска определяется как степень соответствия найденных документов запросу пользователя. Допустим, мы хотим найти документы, в которых встречается выражение "сын знахаря". В результатах поиска мы увидим документы, в которых встречается точно такое выражение. Но присутствуют и документы, содержащие искомые слова, но не выражения, например: "родители привозят
сынав небольшой городок на Адриатическом побережье, к местному
знахарю". И если всего найдено 200 документов, из которых только в 80 встречается именно искомое словосочетание, то точность поиска будет оценена как 80/200 (0,4). Чем точнее поиск, тем выше вероятность, что пользователь найдет нужные документы, тем меньше будет избыточной, лишней информации.
Для повышения точности результата в различных поисковых системах применяются различные способы. Каждый поисковик использует свои решения, в целом предназначенные для выполнения близких по сути задач. К примеру, вот что по этому поводу сказано на сайте Рамблера:
Повышение точности в поисковой машине Рамблер достигается за счет использования различных технологий на всех этапах обработки и поиска информации. Одним из наиболее интересных процессов является распознавание грамматических омонимов.
Омонимы— это слова, которые имеют одинаковое написание, но различный смысл. Различают лексические и грамматические омонимы. Лексические омонимы относятся к одной части речи, как, например, существительное "бор": хвойный лес, стальное сверло и химический элемент. Грамматические омонимы относятся к разным частям речи, поэтому по написанию у них обычно совпадают только отдельные формы. Примерами грамматических омонимов могут служить слова "печь" (существительное русская
печьи глагол
печьпирожки) и "рядовой" (прилагательное
рядовойсотрудник и существительное
рядовойИванов).
Омонимы не только увеличивают размер индексной базы (так как для каждого такого слова приходится хранить все его возможные значения), но и отрицательно сказываются на точности поиска. Если пользователь ищет слово "данные", ему неинтересно получить в найденном все документы, которые содержат слово "дать". Для того чтобы результаты поиска были точнее, модуль синтаксического анализа проводит разбор окружения слов-омонимов с целью установления их наиболее вероятных значений. Например, если рядом со словом "печь" стоит существительное ("пирожки", "картошка"), то с высокой вероятностью "печь" в данном контексте является глаголом. На сегодняшний день анализатор способен распознавать значения только грамматических омонимов.
Синтаксический анализ позволяет также с определенной вероятностью распознавать некоторые имена собственные. Например, если в тексте несколько слов подряд написано с большой буквы, они чаще всего представляют собой имя собственное (Петр Петрович, Московский Государственный Университет). Данные о таких конструкциях учитываются при индексации и обработке запроса.