Тайны чисел: Математическая одиссея - Маркус дю Сотой (2011)
-
Год:2011
-
Название:Тайны чисел: Математическая одиссея
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Артем Галактионов
-
Издательство:Азбука-Аттикус
-
Страниц:13
-
ISBN:978-5-389-12440-0
-
Рейтинг:
-
Ваша оценка:
Тайны чисел: Математическая одиссея - Маркус дю Сотой читать онлайн бесплатно полную версию книги
Хотя ученые и не пришли к окончательным выводам, имеется математическая теория, которая объясняет склонность цикад к простым числам. Сперва несколько фактов. В лесу может быть только один выводок цикад, так что объяснение не касается совместного использования ресурсов несколькими выводками. Почти каждый год где-либо в Соединенных Штатах появляется выводок цикад с циклом, составляющим простое число лет. Но в 2009 и 2010 гг. цикад не было. Напротив, в 2011 г. на юго-востоке США было массивное нашествие цикад с 13-летним циклом. (Кстати, 2011 является простым числом, но все же я не думаю, что цикады настолько умны.)
Лучшая на сегодняшний день теория простых чисел, лежащих в основе цикла цикад, исходит из возможного существования хищника, который также периодически появляется в лесу. Появление хищника приходится на время нашествия цикад, и он пирует, поедая насекомых. Но тут в дело вступает естественный отбор, потому что цикады, которые регулируют свою жизнь, исходя из цикла, составляющего простое число лет, будут значительно реже сталкиваться с хищниками, чем цикады с жизненным циклом, не представляющим простое число.
Предположим, например, что хищники появляются каждые 6 лет. Цикады с 7-летним циклом будут совпадать с хищниками лишь раз в 42 года. В отличие от них цикады с 8-летним циклом будут появляться одновременно с хищниками каждые 24 года; у цикад же с 9-летним циклом совпадение будет еще чаще – каждые 18 лет.
Рис. 1.02. Взаимодействие на протяжении 100 лет между популяциями цикад с 7-летним жизненным циклом и хищников с 6-летним
Рис. 1.03. Взаимодействие на протяжении 100 лет между популяциями цикад с 9-летним жизненным циклом и хищников с 6-летним
В лесах Северной Америки было, по-видимому, настоящее соревнование, чтобы найти наибольшее простое число. Цикады настолько преуспели в этом, что хищники либо вымерли, либо переселились, оставив цикад с их странным жизненным циклом в простое число лет. Но, как мы вскоре увидим, не только цикады научились использовать синкопированный ритм простых чисел.
Цикады против хищников
Скачайте PDF-файл с веб-сайта «Тайн 4исел». Вырежьте хищников и два семейства цикад. Положите хищников на годы, кратные 6. Каждый игрок берет по семейству цикад. Возьмите три обычные игральные кости с шестью гранями. Сумма чисел, выпавших на трех игральных костях, определит, как часто появляется ваше семейство цикад. Так, если у вас выпало 8, поместите цикаду на каждое число, кратное 8. Но, если на данном месте уже есть хищник, вы не можете разместить там цикаду, например, не можете положить цикаду на 24, потому что это число уже занято хищником. Победителем будет игрок с наибольшим числом цикад на поле. Вы можете модифицировать игру, изменив периодичность, с которой появляется хищник, то есть вместо 6 выбрать другое число.
Отчего простые числа 17 и 29 являются ключом к концу времени?