Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд
-
Название:Программируя Вселенную. Квантовый компьютер и будущее науки
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Анна Стативка
-
Издательство:Альпина Диджитал
-
Страниц:126
-
ISBN:978-5-91671-270-4, 978-5-91671-324-4
-
Рейтинг:
-
Ваша оценка:
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»
Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги
Задолго до этой работы Эйнштейна, однако, представление об атомах использовалось как надежное основание для описания поведения теплоты и энергии. Теплота, как уже было известно, является формой энергии. Еще в XVIII в. Джеймс Уатт провел знаменитую демонстрацию: он погрузил в воду мортиру и стал рассверливать цилиндр ствола большим сверлом на лошадиной тяге. Лошади двигались по кругу, сверло вращалось и срезало металл, формируя отверстие ствола. В конце концов вода закипела, наглядно продемонстрировав превращение лошадиных сил в тепло. К середине XIX в. взаимообмен между механической энергией и теплотой был установлен вполне надежно и был провозглашен первым началом термодинамики: энергия сохраняется, когда механическая энергия превращается в тепло.
В отличие от механической энергии, энергия в форме тепла, как оказалось, обладала таинственным свойством, названным энтропией. Энтропия не позволяла части тепла превращаться в полезную работу. Как и энергию, энтропию можно было определить количественно в ходе эксперимента: всякий раз, когда механическая энергия превращалась в теплоту, создавалось количество энтропии, равное энергии, деленной на температуру. Когда же теплота превращалась в механическую энергию, как в одном из паровых двигателей Уатта, количество энтропии в охлажденном паре выхлопа оказывалось больше или равно количеству энтропии в горячем паре, приводящем двигатель в действие. Иначе говоря, энтропия, чем бы она ни была, никогда не уменьшалась.
Но что это за штука, энтропия? Ответ дает атомная гипотеза. Теплота – это форма энергии, и энтропия связана с теплотой. Если вещи состоят из атомов, то существует простое объяснение теплоты – это просто энергия движения атомов. Тогда и у энтропии есть простая интерпретация: для описания движения атомов нужно много битов информации. Величина, называемая энтропией, пропорциональна количеству битов, необходимых для того, чтобы описать то, как движутся атомы.
Ученые XIX в. уже могли согласиться с тем, что теплоту можно воспринимать как энергию движущихся атомов. В конце концов, начиная с работ Галилея и Ньютона, написанных двумя столетиями ранее, было известно, что все, что движется, обладает энергией – так называемой кинетической (от греческого kinesis, «движение»), связанной с этим движением. Чем быстрее движется предмет, тем больше у него кинетической энергии. Когда механическая энергия превращается в теплоту, как в эксперименте Уатта, где лошади сверлили ствол мортиры и при этом нагревали воду, механическая работа, произведенная лошадьми, превращается в кинетическую энергию молекул воды. Точно так же, когда горячий газ перемещает поршень в паровом двигателе, это происходит благодаря тому, что молекулы воды, формирующие пар, все время ударяются о поршень, оказывая давление на него. Когда механическая энергия превращается в кинетическую энергию атомов и молекул и наоборот, первое начало термодинамики гарантирует, что общая энергия остается неизменной.
Для ученых XIX в. не было естественным думать об энтропии как об информации. Сейчас, в разгар очередной информационной революции, нас уже не удивляет, что информация – не менее фундаментальная величина, чем энергия. В конце XIX в., однако, вообще не было очевидно, что информация является некоей величиной.
В середине XIX в. Джеймс Клерк Максвелл детально разработало теорию теплоты в терминах движения атомов. Он выяснил, как быстро движутся атомы в зависимости от температуры: как оказалось, кинетическая энергия атомов пропорциональна температуре. Чем выше температура объекта, тем быстрее движутся его атомы.