Knigionline.co » Наука, Образование » Программируя Вселенную. Квантовый компьютер и будущее науки

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд

Программируя Вселенную. Квантовый компьютер и будущее науки
  • Название:
    Программируя Вселенную. Квантовый компьютер и будущее науки
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Анна Стативка
  • Издательство:
    Альпина Диджитал
  • Страниц:
    126
  • ISBN:
    978-5-91671-270-4, 978-5-91671-324-4
  • Рейтинг:
    5 (1 голос)
  • Ваша оценка:
Любой атом Вселенной, а не лишь только всевозможные макроскопические объекты, способен беречь информацию. Акты взаимодействия атомов возможно обрисовать как простые закономерные операции, в коих заменяют собственные смысла квантовые биты – простые единицы квантовой инфы. Феноменальный, но перспективный расклад Сета Ллойда разрешает элегантно решить вопрос о неизменном усложнении Вселенной: так как в том числе и случайная и довольно краткая программка в ходе собственного выполнения на компе имеет возможность предоставить в высшей степени заманчивые итоги. Галактика каждый день обрабатывает информацию – будучи квантовым компом большого объема, она все время вычисляет личное будущее. И в том числе и эти фундаментальные действия, как рождение жизни, половое размножение, возникновение интеллекта, возможно и надлежит рассматривать как поочередные революции в обработке инфы.
Я с наслаждением пишу это особое вступление для издания книжки «Программируя Вселенную» на российском языке. Я желал бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех сослуживцев из Русского квантового центра, которые несомненно помогли устроить вероятной публикацию сего российского перевода.»

Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд читать онлайн бесплатно полную версию книги

Второму закону термодинамики почти полторы сотни лет, но он до сих пор остается предметом научных споров. Почти никто не сомневается в его истинности, но есть самые разные мнения о том, почему он справедлив. Гипотеза о вычислительной природе Вселенной может снять по крайней мере часть этих споров. Второе начало термодинамики, если понять его должным образом, основано на взаимодействии между «видимой информацией» о состоянии вещества – той, к которой у нас есть доступ, и «невидимой информацией» – битами энтропии, которые ничуть не менее физические и которые хранятся атомами, формирующими это вещество.

Истоки вычислительной модели

В программу моего обучения в Гарварде входило «Общее образование». На практике это означало, что если я способен объяснить, для чего мне нужен тот или иной курс, то могу его посещать. Поэтому, заручившись благословением – или, во всяком случае, подписью – своего научного руководителя, Нобелевского лауреата Шелдона Глэшоу, я составил для себя программу сам. Ее основными элементами были лекции Роберта Фитцджеральда о просодии и Гомере, Вергилии и Данте, а также лекции Леона Кирхнера о камерной музыке и семинар Бернарда Коэна «Влияние физики на общество». Глэшоу также настоял на том, чтобы я прослушал немного лекций по физике.

Я выбрал два курса, с которых начался мой путь к вычислительной модели Вселенной. Первым был курс Майкла Тинкэма по статистической механике, замечательный синтез квантовой механики (физики атомов и молекул) и термодинамики (тепло и работа). Как наука статистическая механика возникла в последние годы XIX в. и привела к созданию лазеров, электрических лампочек, транзисторов и многих других изобретений. Основная идея курса Тинкэма состояла в том, что термодинамическая величина, известная как энтропия и представляющая собой меру тепловой энергии, которая не может быть превращена в механическую энергию в замкнутой термодинамической системе, может также восприниматься как мера информации.

Понятие энтропии (от древнегреческого «в превращении») впервые ввел Рудольф Клаузиус в 1865 г. Тогда она представлялась таинственной термодинамической величиной, которая ограничивает мощность паровых двигателей. Тепло – это много энтропии. Механизмы, работающие на основе тепловой энергии, например паровые двигатели, должны что-то делать с этой энтропией; как правило, они избавляются от нее посредством выхлопа. Они не могут превратить всю тепловую энергию в полезную работу. Клаузиус же отметил, что энтропия имеет тенденцию увеличиваться.

В конце XIX в. основатели статистической механики, Максвелл, Больцман и Гиббс, поняли, что энтропия – это еще и форма информации. Энтропия – мера количества битов недоступной информации, содержащейся в атомах и молекулах, из которых состоит мир. Тут-то и появилось второе начало термодинамики, которое объединило это наблюдение с тем фактом, что законы физики, как мы скоро увидим, сохраняют информацию. Природа не разрушает биты.

Да, но ведь нужно бесконечное число битов энтропии, чтобы точно определить положение и скорость даже одного-единственного атома, возразили мои одногруппники. Это не так, ответил Тинкэм. Законы квантовой механики, управляющие поведением физических систем на микроскопическом уровне, гарантируют, что атомы и молекулы хранят лишь конечное количество информации.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий