Почему - Саманта Клейнберг (2017)

Почему
Книга Почему полная версия читать онлайн бесплатно и без регистрации

Автор показывает, что такое причинно-следственная связь, поясняет, почему в ее определении мы часто ошибаемся, как можно принимать верные решения. Благодаря этой книге вы научитесь анализировать информацию, выявлять причинно-следственные связи, объединять прошлое, предсказывать будущее.
Книга будет интересна философам, аналитикам, экономистам, медикам, юристам, начинающим ученым.

Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги

Один из методов расчета причинной значимости – сразу зафиксировать значения всех переменных[256] и взглянуть на различия в следствии для каждого заданного значения. Партия может выступать за или против законопроекта, идеологические предпочтения могут совпадать с ним или нет, равно как и избиратели. Итак, мы можем взять каждую комбинацию и посмотреть, какое значение оказывает одобрение электората для любого соединения партийной поддержки и идеологических переменных. Поскольку эти две переменные полностью определяют исход голосований, разницы не будет никакой.

Однако при добавлении переменных каждый из возможных сценариев будет отмечен не слишком часто, и мы, возможно, не увидим достаточно примеров, чтобы вывести статистически значимые заключения. Более практичная мера значимости, чем разработанная мной, предусматривает наличие одновременно только одной константы, при этом для усреднения различий причина либо вводится, либо нет[257]. Для расчета этой меры причинной значимости εavg мы выясним, какое значение оказывают избиратели, взяв константой партийную поддержку законопроекта, а потом сделаем то же самое для идеологии и так далее, в итоге сведя все отличия воедино, чтобы получить средний показатель для значимости избирателей.

По большей части в методах, основанных на вероятностях (например, как этот), берется набор данных и высчитывается число, обозначающее причинную значимость одной переменной по сравнению с другой. Это значение может находиться в диапазоне от – 1 до 1, где –1 – сильная отрицательная причина, мешающая следствию произойти, а 1 – сильная положительная причина следствия.

Поскольку обязательно будут помехи, ошибки и упущенные данные, нельзя сделать допущение, что нечто, не оказывающееся причиной, всегда будет иметь нулевое значение. Вместо этого, как правило, необходимо определить, какие значения меры причинной значимости будут статистически значимыми (вспомним разговор о p-значениях и тестирование множественных гипотез в главе 3)[258].

К примеру, когда мы рассчитываем среднюю причинную значимость большого количества потенциальных причин, при этом нет истинных причинных взаимосвязей, распределение рейтингов значимости (значений εavg) будет выглядеть как колоколообразная (гауссова) кривая, или как светло-серые столбцы на рис. 6.9. Если в тестируемом наборе присутствуют некоторые истинные причинные взаимосвязи, их рейтинги значимости будут основаны на других распределениях (черные столбцы на том же рисунке). Можно применить это различие между наблюдаемым и ожидаемым, чтобы выяснить, какие значения меры могут считаться каузальными[259].

Рис. 6.9. Гистограмма рейтингов значимости для набора причинных зависимостей. Область светло-серого цвета (со средним значением 0, обозначающим незначимость) представляет ложные зависимости, черные столбцы – истинные причины. Из-за помех и иных факторов не все непричины будут иметь значимость 0, но будут распределены вокруг этой центральной области

Как обычно, чтобы высокие уровни причинной значимости соответствовали истинным причинам, нужно быть уверенными, что мы точно измерили силу (и, следовательно, вероятности репрезентативны относительно истинных значений) и, как в байесовских сетях, общие причины (или можно переоценить значимость других причин либо выявить ложные зависимости). Для этих временных рядов также понадобится сделать допущение, что отношения остаются стационарными во времени. Причина в том, что если отношения изменяются во времени, то, возможно, две переменные будут независимы для одной, но не для другой части временных рядов. Когда мы исследуем весь временной ряд сразу, отношения могут показаться слабыми, даже несмотря на их относительную силу на фоне некоторой части ряда.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий