Почему - Саманта Клейнберг (2017)
-
Год:2017
-
Название:Почему
-
Автор:
-
Жанр:
-
Язык:Русский
-
Страниц:160
-
Рейтинг:
-
Ваша оценка:
Автор показывает, что такое причинно-следственная связь, поясняет, почему в ее определении мы часто ошибаемся, как можно принимать верные решения. Благодаря этой книге вы научитесь анализировать информацию, выявлять причинно-следственные связи, объединять прошлое, предсказывать будущее.
Книга будет интересна философам, аналитикам, экономистам, медикам, юристам, начинающим ученым.
Почему - Саманта Клейнберг читать онлайн бесплатно полную версию книги
Скажем, Адам и Бетти больны гриппом. За неделю до того у Адама был обед с Клер, а та заболевает гриппом через день после второго обеда, с Бетти. Шансы на то, что Клер заболеет гриппом, росли после ее встречи с Адамом, но потом стали снижаться, когда наступил инкубационный период. Они возросли снова после обеда с Бетти и оставались высокими, пока та на самом деле не заболела. Это показано на рис. 8.5.
Рис. 8.5. Вероятность гриппа с течением времени. Шанс растет после первого обеда и снижается до второго. После второго контакта вероятность растет то того, пока человек действительно не заболевает гриппом
Несмотря на то что перед нами два примера причины-типа (контакт с носителем гриппа), мы видим, что здесь нет сверхдетерминированности, поскольку только один контакт стал причиной болезни. В предыдущем разделе мы разбирались с подобной ситуацией с помощью временных паттернов на уровне типа. Этот подход имеет отличия, поскольку здесь мы анализируем изменение вероятности на уровне токена. Это также поможет разобраться со случаями, где токен-вероятность отличается от вероятности-типа.
Известно, что вакцины в целом предотвращают летальный исход, но в некоторых редких случаях становятся его причиной; конкретное растение может погибнуть, если его полить кофе, даже если никакое другое растение от этого не погибало; можно возложить вину на человека, попытавшегося совершить убийство, даже если потенциальная жертва выжила. Ключевое ограничение в следующем: исходя из общей информации для объяснения конкретных случаев, мы допускаем, что значимость на уровне типа равна значимости на уровне токена.
Этот подход – посмотреть, как вероятность события меняется после наступления причины и как меняется со временем, – предложил философ Эллери Иллс[332]. Проблема гораздо шире, чем наши возможности ее рассмотрения на этих страницах, однако суть подхода в том, что единичные вероятности трактуются иначе, чем общие, и в основе лежит изменение вероятности реального события с течением времени.
Использование вероятностей единичного случая, который мы пытаемся объяснить, означает, что мы можем провести различие между тем, что случается как правило, и тем, что случилось в действительности. Здесь по-прежнему учитывается причина, обычно предшествующая событию и влекущая его за собой.
Немаловажно, что при этом мы можем обновить аналитические выводы, приведя их в соответствие с тем, что наблюдаем. В одном из примеров Иллса озорные белки любили отталкивать мячи для гольфа от лунок, но однажды зверек помог игроку, направив мяч прямо в лунку. Если применить метод, основанный на вероятностях уровня типа, то, даже если мы в действительности видим, что траектория мяча делает попадание все более и более вероятным, и наблюдаем, как меняется его путь после того, как по нему ударили, мы все равно не сможем откорректировать уже имеющееся знание на уровне типа, чтобы учесть новые данные. И это приведет к получению не связанных между собой и контринтуитивных результатов.
Когда вероятность меняется после наступления события, становится высокой и остается такой, пока не случится следствие, говорят, что следствие произошло из-за причины. Наоборот, если вероятность события падает после наступления события, тогда следствие происходит, несмотря на событие[333]. Трудности, характерные для этого подхода, имеют в основном практическую природу, поскольку, к примеру, непросто выяснить вероятность попадания мяча в лунку на каждой точке его траектории.
Автоматизация объяснения
Какими возможностями мы располагаем, чтобы протестировать контрфактуальные рассуждения? Как узнать, насколько изменилась вероятность со временем?