Knigionline.co » Наука, Образование » Простая сложная Вселенная

Простая сложная Вселенная - Кристоф Гальфар (2015)

Простая сложная Вселенная
Представьте Себе, то что вам стали очень во мироздании вблизи со помирающей звездой. Либо скорчились вплоть до объемов атома также направились во невообразимое авантюра во махоньком обществе. Фотонная агрофизика, темные отверстия, концепция струн, черная основа, синхронные миры – в случае если я желаем на самом деле осознать данные действа, в таком случае нам протечется погружаться во общество количеств также ужасных формул. Кристоф Гальфар произвел все без исключения, для того чтобы вам никак не страдали со невозможными графиками также громоздкими уравнениями. Легким стилем некто откроет для вас концепции, какие поясняют, равно как организована наша Галактика. Со поддержкой метафор с нашей обыкновенной существования также увлекательных ситуаций вам познакомитесь со наиболее удивительными также в 1-ый мнение неясными действами в Мира.В Случае Если в пороге двадцатого века еще также сохранились колебания, в таком случае во 20 первоначальный заключение был предрешён — во задачах постижения настоящей натуры действительности свой ежедневный навык внедряет нас во неверное толкование вопроса. В Случае Если вникнуть, данное никак не таким образом уже удивительно.

Простая сложная Вселенная - Кристоф Гальфар читать онлайн бесплатно полную версию книги

В квантовом мире, когда за ними наблюдают, электроны становятся частицами с заданными свойствами, подобно каплям, взятым из океана, но их свойства не похожи ни на что виденное вами прежде. Они не ведут себя привычным образом или по крайней мере так, как может нами ожидаться, исходя из опыта повседневной жизни.

Даже если знать, где электрон, вам не узнать, как быстро он движется: его скорость становится непредсказуемой. Именно поэтому было так трудно найти электрон внутри атома водорода. Стоило вам его увидеть, как он начинал двигаться хаотично. Вы были не в состоянии следить за ним, и он исчезал из виду.

Аналогичным образом, если знать, сколько энергии имеет электрон, нельзя рассчитать, как долго он собирается сохранять ее.

Энергия и время, местоположение и скорость являются действительно независимыми друг друга понятиями полей квантового мира. Подробнее вы услышите обо всем этом в шестой части, но на данный момент, пока ваша мини-копия впервые путешествует по квантовому миру, вы можете считать мое замечание предупреждением (а возможно, приманкой для некоторых читателей). Вашей уменьшенной копии придется просто воспринимать все так, как вы делали это раньше, будучи маленьким ребенком, открывающим для себя мир: без предубеждений. Местоположение и скорость не могут быть известны одновременно? Хорошо. Так оно и есть. Квантовые законы допускают сверхъестественные прыжки и туннели? Хорошо, пусть так и будет. Объяснение придет со временем, а может, и нет.

Тем не менее все разговоры о квантовом туннельном эффекте звучат для меня полным бредом. Мне рассказывали, как однажды после прочтенной лекции по квантовой физике Эйнштейн сказал студентам: «Если вы меня поняли, значит, я выражался недостаточно ясно». Так что, если это тоже звучит для вас как нонсенс, то все в порядке. Природа не обижается. Она здесь, чтобы мы ее открыли, вот и все. Но действительно ли это реально?

Что ж, некоторые относились к квантовому туннелированию довольно серьезно и пытались найти ему практическое применение. Удивительно, но им это удалось.

Около тридцати лет назад, работая на компанию IBM в Цюрихе, немецкий физик Герд Бинниг и швейцарский физик Генрих Рорер были убеждены, что смогли бы использовать квантовое туннелирование для визуального осмотра любых поверхностей в феноменально малом масштабе. Ученые полагали, что оно позволит им наконец-то увидеть атомы.

Как правило, электрон не покидает свой атом, если не найдется местечка лучше. И обычно, если альтернатива появляется, она должна располагаться довольно близко, в противном случае электрону туда не попасть. Разве только он не использует свою квантовую силу, создав туннель сквозь пустоты и перепрыгнув через препятствия.

С помощью чрезвычайно тонкой и сверхзаточенной острой иглы, подключенной к регистратору измерения тока, Бинниг и Рорер сканировали поверхность материала, не прикасаясь к нему. Находясь довольно далеко от поверхности, они не должны были обнаружить ничего, так как расстояние между ней и иглой слишком велико для амплитуды движения электрона. Но они засекли электрические токи, соотносящиеся с прыжками электрона.[33] Чем ближе игла была к поверхности материала, тем больше обнаруживалось скачков и тем заметнее вырастал электрический ток. Сопоставив эти токи на графике, они получили 3D-изображение материала на атомном уровне с экстраординарными подробностями. Они построили микроскоп, называемый теперь сканирующим туннельным микроскопом, которые смог увидеть уже сами атомы. Его точность поразительна: от 1 до 10 % диаметра атома водорода. Другими словами, если бы у атома водорода имелись ноги, то сканирующий туннельный микроскоп смог бы сосчитать их, а может быть, даже и количество пальцев.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий