Простая сложная Вселенная - Кристоф Гальфар (2015)
-
Год:2015
-
Название:Простая сложная Вселенная
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:О. С. Шилова
-
Издательство:Эксмо
-
Страниц:165
-
ISBN:978-5-699-94902-1
-
Рейтинг:
-
Ваша оценка:
Простая сложная Вселенная - Кристоф Гальфар читать онлайн бесплатно полную версию книги
Имея нужную скорость, теоретически планета может вращаться вокруг своей звезды на любом предпочитаемом расстоянии, но это, безусловно, не случай с электронами. В отличие от планетарных орбит, орбитали отделены друг от друга запретными для электронов зонами – местами, где электронов просто не может быть. Кроме того, электроны также способны легко и непринужденно перепрыгнуть эти запретные области с одной орбитали на другую.
ДЛЯ ПЕРЕМЕЩЕНИЯ С ОДНОЙ ОРБИТАЛИ НА ДРУГУЮ ЭЛЕКТРОНЫ ДОЛЖНЫ ПОГЛОТИТЬ ИЛИ ВЫДЕЛИТЬ НЕКОТОРУЮ ЭНЕРГИЮ.
Тем не менее, и это ключевой момент, просто так скакать не получится.
Для перемещения с одной орбитали на другую электроны должны поглотить или выделить некоторую энергию.
И так как чем дальше электрон расположен от ядра атома, тем большим запасом энергии он обладает, то, чтобы перепрыгнуть на следующую, более удаленную от центра орбиталь, ему необходимо получить некоторую энергию, так же как пламя горелки заставляет подняться в воздух воздушный шар.
И наоборот, чтобы приблизиться к ядру, электрон должен избавиться от некоторой части энергии, как клапан выпуска горячего воздуха в воздушном шаре помогает ему вернуться на Землю.
Но откуда же берется эта энергия?
Оттуда же, откуда свет: электроны могут перепрыгивать с одной орбитали на другую, поглощая или испуская свет. Но не просто свет.
Переход с одной орбитали на другую заставляет электроны перепрыгивать разделяющие их запретные зоны, и осуществление такого поступка включает в себя поглощение или отдачу определенного количества энергии, соответствующего определенному световому лучу. Если бы попадающий на них свет был недостаточно насыщен энергией, то электроны не смогли бы совершить прыжок и остались бы на своем месте. И наоборот, при попадании на них чересчур заряженных энергией световых лучей они могут перепрыгнуть через несколько таких зон и даже вылететь из своего атома.
Это было выяснено человечеством в начале двадцатого века.
Такое открытие может не показаться прорывом, но это он и есть.
Эйнштейн (действительно вездесущий товарищ) получил в 1921 году Нобелевскую премию по физике за открытие данного закона на примере составляющих различные металлы атомов.[16]
* * *
Несколько десятилетий экспериментов (и размышлений), проведенных с тех пор на всех известных атомах Вселенной, заставили ученых понять, что энергия, необходимая любому электрону для перехода с одной орбитали на другую внутри какого-то атома, зависит от структуры этого конкретного атома. И тут нам очень-очень повезло, потому что различные виды энергии соответствуют различным источникам излучения – а с помощью телескопов мы, конечно, можем собирать его почти везде.
На практике этот простой факт означает, что ученые могут сказать, из чего состоят удаленные объекты, такие как звезды, облака газа или атмосферы далеких планет, даже не отправляясь туда.
А теперь о том, как ученым это удается.
Представьте себе идеальный источник света, испускающий все возможные длины световых волн, от минимальной энергии микроволн до мощных гамма-лучей, во всех направлениях. Такой идеальный источник создает светящуюся яркую сферу. Если на некотором расстоянии от нее находится атом, то его электроны, ослепленные количеством поступающего света, могут под его воздействием поглотить всю энергию, необходимую для перехода на более высокий энергетический уровень. Во время этой операции они возбуждаются.
Возбуждаются?
Да, возбуждаются. Это правильный технический термин для происходящего.