Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

В этих лекциях мы сосредоточились на относительно простых взаимодействиях между электронами и фотонами на очень малых расстояниях, взаимодействиях, в которых участвует небольшое число частиц. Но я хотел бы сделать еще одно или два замечания о том, как эти взаимодействия проявляются на больших расстояниях, когда происходит обмен очень и очень большим числом фотонов. На таких больших расстояниях расчет стрелок сильно усложняется. Имеются, однако, не столь сложные для анализа ситуации. Например, бывают обстоятельства, когда амплитуда излучения фотона источником не зависит от того, излучались ли другие фотоны. Это происходит, если источник очень массивен (ядро атома) или если множество электронов будет двигаться единообразно (например, колебаться вверх и вниз в антенне радиопередатчика или вращаться по обмотке электромагнита). В этом случае излучается большое количество фотонов в совершенно одинаковых состояниях. Амплитуда поглощения фотона электроном в таких условиях не зависит от того, поглощал ли до этого фотоны этот или любой другой электрон. Поэтому все поведение и описывается просто амплитудой поглощения фотона электроном, зависящей только от положения электрона в пространстве и времени. Для описания такой ситуации физики пользуются обычными словами. Они говорят, что электрон движется во внешнем поле. Физики употребляют слово «поле» для обозначения величины, которая зависит от положения в пространстве и времени. Хороший пример поля – температура воздуха, она меняется в зависимости от того, где вы ее измеряете. С учетом поляризации у поля становится больше компонент. (А именно четыре – в соответствии с четырьмя амплитудами поглощения фотонов в разных состояниях поляризации (X, Y, Z, Т). Эти компоненты называются векторным и скалярным электромагнитными потенциалами. В классической физике из комбинаций потенциалов получаются более удобные компоненты, называемые электрическим и магнитным полями.)

Если электрическое и магнитное поля меняются достаточно медленно, амплитуда перемещения электрона на большие расстояния зависит от траектории его полета. Как мы видели ранее в случае со светом, наиболее важны те траектории, при малом изменении которых углы амплитуд практически не меняются. В результате получается, что частица не обязательно должна лететь по прямой линии.

Все это возвращает нас к классической физике, в которой предполагается, что есть поля и что электроны движутся в них так, что некоторая величина принимает наименьшее значение. (Физики называют эту величину «действием» и формулируют этот закон как «принцип наименьшего действия».) Вот вам один пример того, как квантовая электродинамика объясняет макроскопические явления. Отсюда мы можем двигаться в разных направлениях, но нужно положить какие-то пределы нашим лекциям. Я хотел только напомнить вам, что и явления, наблюдаемые нами на больших масштабах, и странные процессы, наблюдаемые на малых масштабах, порождаются взаимодействием электронов и фотонов и в конечном счете описываются квантовой электродинамикой.

Лекция 4. Нерешенные вопросы

Эта лекция будет состоять из двух частей. Сначала я собираюсь поговорить о проблемах, связанных с квантовой электродинамикой как таковой, предположив, что на свете нет ничего, кроме электронов и фотонов. Затем я расскажу об отношении квантовой электродинамики ко всей остальной физике.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий