КЭД – странная теория света и вещества - Ричард Фейнман (2017)
-
Год:2017
-
Название:КЭД – странная теория света и вещества
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:О. Л. Тиходеева, С. Г. Тиходеев
-
Издательство:АСТ
-
Страниц:72
-
ISBN:978-5-17-112577-6
-
Рейтинг:
-
Ваша оценка:
КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги
Мы будем считать, что амплитуды для этапов 2 и 4 (фотон летит к точке в стекле и от нее) имеют длину, равную 1, и нулевой угол поворота, поскольку можно предположить, что свет не теряется и не рассеивается между стеклом и детектором. Амплитуда этапа 3 (рассеяния фотона электроном) является константой – S (сжатие и поворот на некоторую величину) – и одинакова всюду внутри стекла. (Эта величина, как я отмечал ранее, различна для разных веществ. Для стекла поворот S равен 90°.) Следовательно, из четырех стрелок, которые нужно перемножить, только стрелка для этапа 1 – амплитуда излучения в определенный момент – будет разной для разных путей.
Момент, когда фотон должен вылететь из источника, чтобы достичь детектора А в момент Т (см. рис. 68, б), будет разным для шести различных путей. Фотон, рассеянный в точке Х2, должен быть излучен несколько раньше, чем фотон, рассеянный в Х1, поскольку его путь длиннее. Поэтому стрелка в Т2 повернута на несколько больший угол, чем в T1 – ведь пока время идет, амплитуда излучения фотона в определенный момент для монохроматического источника вращается против часовой стрелки. Это же относится к каждой стрелке вплоть до Т6: все шесть стрелок имеют одинаковую длину, но повернуты на разные углы, т. е. указывают в разных направлениях, поскольку относятся к фотону, излучаемому источником в разные моменты времени.
Рис. 68, в – г. Закончив умножать стрелки для каждой возможности, получим стрелки, показанные на рис. в. Они короче, чем стрелки на рис. б, каждая повернута на 90° (в соответствии с рассеивающими свойствами электронов стекла). При сложении эти шесть стрелок образуют дугу, результирующая стрелка является хордой этой дуги. Можно получить такую же результирующую стрелку, нарисовав две радиальные стрелки (на-правленные по радиусам дуги (см. рис. г) и «вычтя» одну из другой, т. е. повернув стрелку «передней поверхности» в обратную сторону и сложив со стрелкой «задней поверхности». Эта замена была использована для упрощения изложения в первой лекции.
Сжимая стрелку, относящуюся к T1, в число раз, предписанное этапами 2, 3 и 4, и поворачивая ее на 90°, предписанные этапом 3, получаем стрелку 1 (см. рис. 68, в). Следовательно, стрелки 1…., 6 имеют одинаковую (уменьшенную) длину и повернуты друг относительно друга на такой же угол, что и стрелки, характеризующие излучение фотона в Т1…., Т6.
Сложим теперь стрелки 1…., 6. Последовательно соединяя стрелки, получим нечто вроде дуги окружности. Результирующая стрелка служит хордой этой дуги. Длина результирующей стрелки возрастает по мере утолщения стекла: больше толщина стекла – больше слоев, больше стрелок – и получается большая дуга окружности. И так до тех пор, пока не получится половина окружности (результирующая стрелка в этом случае является диаметром). Затем, при нарастающей по-прежнему толщине стекла, длина результирующей стрелки начинает убывать, дуга превращается в полную окружность, и начинается новый период. Квадрат длины результирующей стрелки равен вероятности, которая за цикл колеблется в пределах от нуля до 16 %.
Для получения этого ответа можно применить математический трюк (см. рис. 68, г): соединив стрелками центр окружности с хвостом стрелки 1 и головой стрелки 6, получим две радиальные стрелки. Если повернуть первую из них на 180° и сложить со второй (т. е. «вычесть» первую из второй), получим прежнюю результирующую стрелку! Именно это я и делал на первой лекции: эти два радиуса и есть те две стрелки, которые, как я говорил, соответствуют отражению от «передней поверхности» и «задней поверхности». Каждая радиальная стрелка имеет хорошо известную нам длину 0,2[24].