Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

Чтобы провести более точный расчет, который бы лучше согласовывался с результатами эксперимента, мы должны рассмотреть другие способы, которыми может произойти данное событие. Например, в каждом из двух основных способов один электрон мог отправиться в какое-то новое и чудесное место и испустить фотон (см. рис. 60). Тем временем другой электрон мог попасть в какое-то другое место и поглотить там этот фотон. Вычисление амплитуды первого из этих новых способов заключается в умножении следующих амплитуд: электрон летит из точки 1 в новое и чудесное место 5(где он излучает фотон), затем летит из 5 в 3; другой электрон летит из точки 2 в другое место 6 (где он поглощает фотон), затем летит из 6 в 4. Мы не должны также забывать про амплитуду попадания фотона из 5 и 6. Я напишу амплитуду такого способа осуществления события в первоклассном математическом виде, а вы можете следить: E(1–5)×j×E(5–3)×E(2–6)×j×E(6–4)×P(5–6) – множество сжатий и поворотов. (Предоставляю вам самим написать формулу для другого случая, когда электрон из точки 1 попадает в точку 4, а электрон из точки 2 попадет в точку 3.)[20]

Рис. 60. Вот два других способа, которыми может произойти событие на рис. 59: на каждом рисунке в точке 5 испускается, а в точке 6 поглощается фотон. Конечные условия здесь такие же, как и в двух предыдущих случаях – два электрона входят и два выходят – так что результаты неотличимы. Поэтому стрелки для этих «других способов» надо прибавить к стрелкам для всех способов на рис. 59, тогда получится еще лучшее приближение для результирующей стрелки всего события.

Но постойте: положение точек 5 и 6 может быть любым в пространстве и времени, не правда ли, – и надо вычислить и сложить стрелки для всех этих положений. Как видите, предстоит немало работы. Дело не в том, что правила очень сложны – это похоже на игру в шашки: правила простые, но вы применяете их снова и снова. Итак, наши сложности при расчете связаны с тем, что нужно нагромоздить целую кучу стрелок. Вот почему студенты целых четыре года учатся делать это эффективно – а ведь мы рассматриваем легкую задачу! (Когда задачи становятся слишком трудными, мы решаем их с помощью компьютера!)

Я хотел бы отметить следующее относительно поглощения и излучения фотонов. Если точка 6расположена позже, чем точка 5, мы можем сказать, что фотон излучился в 5 и поглотился в 6 (см. рис. 61). Если точка 6 расположена раньше, чем 5, мы, вероятно, предпочли бы сказать, что фотон излучился в 6 и поглотился в 5. Но с таким же успехом мы могли бы сказать, что фотон движется вспять во времени! Нам, однако, не надо беспокоиться о том, в каком направлении в пространстве-времени летит фотон; все это учтено в формуле для Р(5–6), и мы говорим, что произошел «обмен» фотоном. Разве не замечательно, что Природа так проста![21]

Далее, вдобавок к обмену фотоном между точками 5 и 6 возможен обмен другим фотоном – между точками 7 и 8 (см. рис. 62). Я слишком устал, чтобы выписывать все основные действия, стрелки которых должны быть перемножены, но, как вы могли заметить, каждая прямая линия дает Е(А – В), каждая волнистая линия дает Р(А – В), а каждое взаимодействие дает j. Итак, имеются шесть Е(А – В), два Р(А – В) и четыре j – и так для любых возможных точек 5, 6, 7 и 8! Это дает миллиарды маленьких стрелочек, которые надо перемножить и потом сложить!

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий