КЭД – странная теория света и вещества - Ричард Фейнман (2017)
-
Год:2017
-
Название:КЭД – странная теория света и вещества
-
Автор:
-
Жанр:
-
Серия:
-
Язык:Русский
-
Перевел:О. Л. Тиходеева, С. Г. Тиходеев
-
Издательство:АСТ
-
Страниц:72
-
ISBN:978-5-17-112577-6
-
Рейтинг:
-
Ваша оценка:
КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги
Мы пренебрегли рассмотрением всех путей, по которым свет мог попасть в В. Например, он мог отразиться от задней поверхности и подняться сквозь стекло наверх, как будто бы направляясь в А, но затем отразиться от передней поверхности и опять попасть в В (см. рис. 44). Эта траектория состоит из девяти этапов. Посмотрим, что последовательно происходит с единичной стрелкой в то время, как свет проходит каждый этап (не беспокойтесь, это только сжатия и повороты!).
Первый этап – фотон летит по воздуху (поворот, сжатия нет). Второй этап – фотон проникает в стекло (поворота нет, сжатие до 0,98). Третий этап – фотон летит в стекле (поворот, сжатия нет). Четвертый этап – отражение от задней поверхности (поворота нет, сжатие до 0,2 от 0,98, т. е. до 0,196). Пятый этап – фотон в стекле возвращается наверх (поворот, сжатия нет). Шестой этап – фотон отскакивает от передней поверхности (это на самом деле «задняя» поверхность, так как фотон остается внутри стекла) (поворота нет, но сжатие до 0,2 от 0,196, т. е. до 0,0392). Седьмой этап – фотон возвращается вниз по стеклу (еще поворот, сжатия нет). Восьмой этап – фотон проходит сквозь заднюю поверхность (поворота нет, а сжатие до 0,98 от 0,0392, т. е. до 0,0384). Наконец, девятый этап – фотон проходит по воздуху в детектор (поворот, сжатия нет).
Рис. 44. Чтобы вычисление было более точным, надо рассмотреть и другой возможный способ прохождения света через две поверхности. Этот способ включает два сжатия до 0,98 (этапы 2 и 8) и два сжатия до 0,2 (этапы 4 и 6), в результате чего получается стрелка длиной 0,0384 (округляем до 0,04).
В результате всех этих сжатий и поворотов получаем амплитуду длиной 0,0384 – для всех практических вычислений можно считать ее примерно равной 0,04 – и повернутую на угол, соответствующий полному повороту часовой стрелки за время движения фотона по этой более длинной траектории. Эта стрелка соответствует второму пути, по которому свет может попасть из источника в В.Теперь у нас имеются два альтернативных варианта, поэтому, чтобы провести результирующую стрелку, мы должны сложить две стрелки: стрелку для более короткого пути, длиной 0,96, и стрелку для более длинного пути, длиной 0,04.
Рис. 45. Природа всегда следит за тем, чтобы были учтены все 100 % света. Когда толщина такова, что одинаково направлены стрелки пропускания, стрелки отражения противоположны друг другу; когда одинаково направлены стрелки отражения, стрелки пропускания противоположны друг другу.
Обычно две стрелки направлены по-разному, потому что изменение толщины стекла влечет за собой изменение направления стрелки длиной 0,04 относительно стрелки длиной 0,96. Но посмотрите, как хорошо все получается: дополнительные обороты, сделанные часовой стрелкой во время движения фотона на этапах 3 и 5 (по пути к А), в точности равны дополнительным оборотам, сделанным за время движения фотона на этапах 5 и 7 (по пути в В). Это значит, что, когда стрелки отражения взаимно уничтожаются, давая результирующую стрелку, соответствующую нулевому отражению, стрелки пропускания света усиливают друг друга, давая результирующую длиной 0,96+0,04, или 1. То есть, когда вероятность отражения равна нулю, вероятность пропускания света равна 100 % (см. рис. 45). А когда стрелки отражения усиливают друг друга, давая амплитуду 0,04, стрелки пропускания света направлены противоположно, что дает амплитуду длиной 0,96–0,04, или 0,92. Следовательно, когда отражение должно быть равно 16 %, пропускание света должно быть равно 84 % (0,92 в квадрате). Видите, как умно придумала Природа свои правила – они гарантируют нам, что мы всегда получим все 100 % учитываемых фотонов![9]