Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

Мы могли ожидать, что весь свет, достигающий детектора, должен отражаться от середины зеркала, так как именно в этом месте угол падения равен углу отражения. И кажется довольно очевидным, что части зеркала вблизи обоих его концов имеют такое же отношение к отражению, как к цене сыра, не так ли?

Хотя вы можете думать, что части зеркала вблизи обоих концов не имеют никакого отношения к отражению света, попадающего из источника в детектор, давайте посмотрим, что может сказать по этому поводу квантовая теория. Правило: вероятность того, что данное событие произойдет, равна квадрату результирующей стрелки, которую найдем, начертив стрелки для каждого способа, которым может произойти событие, и затем соединив («сложив») их. В эксперименте по измерению частичного отражения света от двух поверхностей было два пути, которыми фотон мог попасть из источника в детектор. В этом эксперименте (отражение от одной поверхности) фотон может лететь миллионом различных путей: он может попасть в левую часть зеркала в А или в В (например) и отскочить в детектор (см. рис. 20); он может отскочить от той части, от какой он, по вашему мнению, и должен отскакивать – от G; или он может попасть в правую часть зеркала в К или М и отскочить оттуда. Вы можете подумать, что я сошел с ума, так как в большинстве названных мною случаев угол падения не равен углу отражения. Но я не сошел с ума, потому что в действительности свет распространяется именно так! Как это может быть?

Рис. 20. Согласно квантовой картине мира свет имеет одинаковую амплитуду отразиться от любой части зеркала, от А до М

Чтобы упростить проблему, предположим, что зеркало представляет собой только длинную полоску слева направо, т. е. забудем на минуту, что зеркало имеет толщину и возвышается над бумагой (см. рис. 21). Хотя в действительности на этой зеркальной полоске имеется миллион мест, откуда мог бы отразиться фотон, приближенно допустим, временно разделив зеркало на конечное число маленьких квадратиков, что есть только одна траектория для каждого квадратика. Наш расчет будет более точным (но и производить его станет труднее) по мере того, как мы будем уменьшать квадратики и рассматривать большее количество траекторий.

Рис. 21. Чтобы легче было вычислить, где проходит свет, будем временно рассматривать только полоску зеркала, разделенную на квадратики. Каждому квадратику соответствует одна траектория. Это упрощение никоим образом не уводит в сторону от точного анализа ситуации.

Теперь нарисуем стрелку для каждого способа, которым свет может распространяться в этой ситуации. Каждая стрелка имеет определенную длину и направление. Рассмотрим сначала длину. Вы можете подумать, что стрелка, которую мы проведем для траектории, проходящей через середину зеркала G, будет самой длинной (так как кажется, что очень велика вероятность того, что фотон, попадающий в детектор, летит именно так), а стрелки для траекторий, проходящих через концы зеркала, будут очень короткими. Нет-нет, мы не должны устанавливать такие произвольные правила. А настоящее правило – и то, что на самом деле происходит, – гораздо проще: фотон, попадающий в детектор, имеет почти равные шансы попасть туда любым путем, так что все стрелки будут иметь почти одинаковую длину. (В действительности имеются очень небольшие различия в длине, связанные с различием в углах и расстояниях, но они настолько незначительны, что я их просто не буду учитывать.) Так что давайте условимся, что все нарисованные нами стрелки будут иметь некую произвольную одинаковую длину – я сделаю их очень короткими, потому что у нас будет очень много этих стрелок, изображающих множество возможных траекторий света (см. рис. 22).

Рис. 22. Каждый путь, по которому может идти свет, будет представлен в наших вычислениях стрелкой произвольной стандартной длины (как показано).

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий