Knigionline.co » Наука, Образование » КЭД – странная теория света и вещества

КЭД – странная теория света и вещества - Ричард Фейнман (2017)

КЭД – странная теория света и вещества
Североамериканский радиофизик Рич Фейнман – единственный с разработчиков ядерной бомбы, эксперт согласно фотонной электродинамике, Нобелевский победитель, однако в первую очередь всего – исключительная, полиэдральная человек, никак не вписывающаяся во обычные граница вида «человека науки». Превосходный выступающий, некто переменял любую собственную лекцию во увлекательную умственную забаву. В его представления стремились никак не только лишь учащиеся также сотрудники, однако также общество попросту вовлеченные физикой.Во базу данной книжки сошли известные лекции Ричарда Фейнмана, прочтенные им во Калифорнийском институте.Во данных лекциях именитый радиофизик повествует об фотонной электродинамике – концепции, во формировании каковой воспринимал содействие некто непосредственно, – повествует легким также легкодоступным стилем, ясным в том числе и лично обыкновенному читателю.Никак Не напрасно в том числе и об самый-самом первоначальный, принстонском издании «КЭД» оценки слагали: «Книга, что целиком представляет увлекательный также смышленый образ Фейнмана, совершившего фотонную электродинамику никак не только лишь ясной, однако также презанятной!»

КЭД – странная теория света и вещества - Ричард Фейнман читать онлайн бесплатно полную версию книги

У Ньютона было несколько остроумных соображений относительно этой проблемы[3], но в итоге он понял, что еще не создал удовлетворительной теории.

На протяжении многих лет после Ньютона частичное отражение от двух поверхностей благополучно объяснялось волновой теорией[4], но когда провели эксперименты, в которых на фотоумножители светили очень слабым светом, волновая теория потерпела крах. По мере того, как свет становился все более тусклым, фотоумножители продолжали издавать полновесные щелчки – только они раздавались все реже. Свет вел себя как частицы.

Сегодня ситуация такова, что у нас нет хорошей модели для объяснения частичного отражения от двух поверхностей; мы только вычисляем вероятность того, что в данный фотоумножитель попадет фотон, отраженный от стеклянной пластинки. Я выбрал эти вычисления в качестве первого примера, чтобы познакомить вас с методом квантовой электродинамики. Я собираюсь показать вам, «как мы считаем бобы», – что делают физики, чтобы получить правильный ответ. Я не собираюсь объяснять, как фотоны в действительности «решают» вопрос, отскочить ли назад или пройти насквозь. Это неизвестно. (Возможно, вопрос не имеет смысла.) Я только покажу вам, как вычислить правильную вероятность того, что свет отразится от стекла данной толщины, потому что это единственное, что физики умеют делать! То, что нам приходится делать, чтобы решить эту задачу, аналогично тому, что приходится делать, чтобы решить любую другую квантово-электродинамическую задачу.

Вам придется напрячь силы – но не потому, что это трудно понять, а потому, что это скорее забавно: все, что нам надо будет делать – это рисовать маленькие стрелочки на листке бумаги – и больше ничего.

Что же общего между стрелкой и вероятностью того, что определенное событие совершится? В соответствии с правилами, по которым «мы считаем бобы», вероятность события равна квадрату длины стрелки. Например, в нашем первом эксперименте (когда мы измеряли частичное отражение от одной только передней поверхности) вероятность того, что фотон попадает в фотоумножитель А, была равна 4 %. Это соответствует стрелке длиной 0,2, так как 0,2 в квадрате равно 0,04 (см. рис. 6).

В нашем втором эксперименте (когда мы заменяли тонкие стеклянные пластинки чуть более толстыми) фотоны, отскакивая или от передней, или от задней поверхности, попадали в А. Как нарисовать стрелку, чтобы изобразить эту ситуацию? Длина стрелки должна меняться от нуля до 0,4, чтобы представить вероятности от нуля до 16 %, в зависимости от толщины стекла (см. рис. 7).

Начнем с того, что рассмотрим различные пути, по которым фотон мог попасть из источника в фотоумножитель А. Поскольку я делаю упрощение и считаю, что фотон отскакивает либо от передней, либо от задней поверхности, имеются два пути, по которым фотон мог попасть в А. В этом случае мы рисуем две стрелки – по одной для каждого способа, которым могло произойти событие, и затем соединяем их в «результирующую стрелку», квадрат которой представляет собой вероятность события. Если бы событие могло произойти тремя различными способами, мы бы нарисовали три разные стрелки, прежде чем соединить их.

Рис. 6. Странная особенность частичного отражения от двух поверхностей заставила физиков отказаться от абсолютных предсказаний и ограничиться вычислением вероятности события. Квантовая электродинамика дает нам для этого метод, состоящий в рисовании стрелочек на листе бумаги. Вероятность события представлена площадью квадрата, стороной которого является стрелка. Например, стрелка, соответствующая вероятности 0,04 (4 %), имеет длину 0,2.

Рис. 7. Стрелки, соответствующие вероятностям от 0 до 16 %, имеют длины от 0 до 0,4

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий