Knigionline.co » Наука, Образование » Квантовые вычисления со времен Демокрита

Квантовые вычисления со времен Демокрита - Скотт Ааронсон (2013)

Квантовые вычисления со времен Демокрита
  • Год:
    2013
  • Название:
    Квантовые вычисления со времен Демокрита
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Наталья Лисова
  • Издательство:
    Альпина Диджитал
  • ISBN:
    9785961450309
  • Рейтинг:
    0 (0 голос)
  • Ваша оценка:
Написанная знакомым теоретиком в области квантовых вычислений Скоттом Ааронсоном, данная книжка проведет вас сквозь удивительное многообразие тем, изучая глубочайшие идеи арифметики, информатики и физики от доктрине множеств, вычислительной трудности, квантовых вычислений до интерпретации квантовой механики. Не считая такого, вы познакомитесь с обсуждениями сравнительно путешествий во времени, феномена Ньюкома, антропного принципа и взоров английского физика и математика Роджера Пенроуза.
Неформальный манера Ааронсона готовит данную ошеломительную книжку доступной для читателей с научной подготовкой, а еще для учащихся и изыскателей, работающих в области физики, информатики, арифметики и философии. Наконец, для кого же предопределена данная книга? Неуж-то для неспециалистов, которые в действительности не протекут далее 1 руководители, но которые попытаются впечатлить постояльцев, положив эту умственную книжку на журнальный столик? Я вижу только 1 другую вероятность: есть конкретная публика (как правило, ей уделяют не достаточно внимания) у научных книжек, которые невозможно отнести ни к «популярной», ни к «профессиональной» категории. Речь идет о книжках, которые обрисовывают участок умственного ландшафта.

Квантовые вычисления со времен Демокрита - Скотт Ааронсон читать онлайн бесплатно полную версию книги

Этот обмен репликами служит, по существу, краеугольным камнем всей книги. Одной из тем для моих рассуждений будет то, что квантовая механика снабжает, судя по всему, и Разум, и Чувства новыми аргументами в их 2400-летнем споре, хотя по-прежнему (я так считаю) не обеспечивает чистой победы ни для одной стороны.

В главах 2 и 3 я перехожу к обсуждению самой глубокой из всех имеющихся у нас областей знания, совершенно намеренно не зависящей от «грубых фактов» об окружающем мире, а именно математики. Даже здесь что-то внутри меня (и, как я подозреваю, внутри многих других компьютерщиков!) с подозрением относится к тем разделам математики, которые несут на себе явный отпечаток физики, – это, к примеру, дифференциальные уравнения в частных производных, дифференциальная геометрия, группы Ли и что угодно еще, выглядящее «слишком непрерывным». Поэтому я начинаю с самых «нефизических» разделов математики, известных на данный момент, – с теории множеств, логики и вопросов вычислимости. Я рассказываю о великих открытиях Кантора, Фреге, Гёделя, Тьюринга и Коэна, которые помогли нанести на карту контуры математических рассуждений как таковых и которые – в процессе демонстрации причин, по которым всю математику невозможно свести к фиксированному «механическому процессу», – продемонстрировали также, сколь значительную часть ее все же можно свести к такому процессу; заодно удалось прояснить, что, собственно, представляет собой сей «механический процесс». Поскольку я никак не могу от этого удержаться, в главе 4 я углубляюсь в давний спор о том, не сводится ли работа человеческого разума к «устоявшимся механическим процессам». Я стараюсь излагать позиции сторон в этом споре как можно беспристрастнее (хотя мои собственные пристрастия, несомненно, тоже заметны).

В главе 5 представлена молодая сестра теории вычислимости – теория вычислительной сложности, которая в дальнейшем играет в книге центральную роль. Я пытаюсь проиллюстрировать, в частности, как вычислительная сложность позволяет нам методично брать «глубокие философские загадки» о пределах человеческого знания и превращать их во «всего лишь» безумно сложные нерешенные математические задачи, в которых, по мнению некоторых, отражается большая часть того, что нам хотелось бы знать! Невозможно придумать лучший пример такого превращения, чем так называемая проблема перебора, или вопрос о равенстве классов сложности P и NP, о котором я расскажу в главе 6. Затем, в качестве разогрева перед квантовыми вычислениями, в главе 7 будут рассмотрены многочисленные применения классического понятия случайности – как в теории сложности вычислений, так и в других областях жизни; а глава 8 объяснит, как при помощи идей из области вычислительной сложности начиная с 1970-х гг. удалось по-настоящему революционизировать теорию и практику криптографии.

Все это – всего лишь подготовка сцены для самой тяжелой части книги – главы 9, в которой представлен мой взгляд на квантовую механику как «обобщенную теорию вероятностей». В главе 10 объясняются основы моей собственной научной области – квантовой теории вычислений, которую можно кратко определить как соединение квантовой механики и теории вычислительной сложности.

В качестве «награды» за упорство глава 11 предлагает критический разбор идей сэра Роджера Пенроуза, убежденного, как известно, в том, что мозг – это не просто квантовый компьютер, но квантовый гравитационный компьютер, способный решать невычислимые по Тьюрингу задачи, и что это или что-то подобное можно показать при помощи теоремы Гёделя о неполноте. Указать на проблемы и недостатки этих идей проще простого, и я это делаю, но еще интереснее, как мне кажется, задаться вопросом о том, не скрываются ли все же в рассуждениях Пенроуза крупицы истины.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий