Knigionline.co » Прикладная литература » Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Любой с нас горазд повышать, разделять, строить во уровень также осуществлять прочие процедуры надо крупными количествами во разуме также со огромный быстротой. С Целью данного никак не необходимо регулировать 10-ки тыс. образцов также обучаться годами — довольно применять элементарные способы, изображенные во данной книжке. Они легкодоступны с целью людишек каждого года также различных точных возможностей.Данная книжка обучит вам рассматривать во разуме стремительнее, нежели в калькуляторе, фиксировать крупные количества также извлекать с арифметики наслаждение.Ми нравится рассуждать об этих людах, каким первоначальным прибыла во мозг идея рассматривать предмета. Скорее Всего, они одновременно подметили, то что результат в перстах прекрасно функционирует. Способен являться, тот или иной-нибудь древнейший индивид согласно фамилии Ог (появившийся еще вплоть до потопа) либо единственный с его друзей заявил: «Нас здесь единственный, 2, 3, 4, 5. Означает, нам необходимо 5 кусочков плода.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги

Для дат 2100-х годов (то есть дат XXII столетия) следует прибавить 5 к коду соответствующего года XXI века (или вычесть из него 2, что эквивалентно). Например, код 2009 года равен 4, тогда 2109 год имеет код 4 + 5 = 9, который после вычитания 7 идентичен коду года 2.

Даты 1700-х годов (XVIII столетие) рассчитываются так же, как даты XXII века (путем прибавления 5 или вычитания 2), но здесь нужно быть внимательным. В то время был принят григорианский календарь, созданный в 1582 году. Но он не был официально принят англичанами (и американскими колониями) вплоть до 1752 года, когда среда 2 сентября вдруг стала четвергом 14 сентября. Удостоверимся, что 14 сентября 1752 года в самом деле было четвергом. Так как код 2052 года равен 2 (посмотрите в таблице выше или посчитайте 52 + 13–63 = 2), то 1752 год будет иметь код 0. Отсюда для 14 сентября 1752 года получаем:

Код месяца + Дата + Код года = 4 + 14 + 0 = 18

и 18–14 = 4, что действительно означает четверг. Однако наша формула не сработает для более ранних дат (которые исчислялись по юлианскому календарю)[18].

Наконец, отметим, что в соответствии с григорианским календарем високосный год наступает раз в четыре года, за исключением тех годов, которые делятся на 100, хотя есть и исключение из исключения: годы, делимые на 400, тоже являются високосными. Так, 1600, 2000, 2400 и 2800 годы будут високосными, а 1700, 1800, 1900, 2100, 2200, 2300 и 2500-й — нет. По сути, григорианский календарь повторяет себя каждые 400 лет, так что вы можете преобразовать любую дату из будущего в дату около 2000 года. Например, 19 марта 2361 года и 19 марта 2761 года придутся на тот же день недели, что и 19 марта 1961 года, которое мы ранее уже определили как воскресенье.

УПРАЖНЕНИЕ: ДЕНЬ ДЛЯ ЛЮБОЙ ДАТЫ

Определите день недели для следующих дат.

1. 19 января 2007 г.

2. 14 февраля 2012 г.

3. 20 июня 1993 г.

4. 1 сентября 1983 г.

5. 8 сентября 1954 г.

6. 19 ноября 1863 г.

7. 4 июля 1776 г.

8. 22 февраля 2222 г.

9. 31 июня 2468 г.

10. 1 января 2358 г.

Глава ∞

Эпилог: как математика помогает задуматься о странных вещах

Как издатель журнала Skeptic и исполнительный директор Сообщества скептиков, редактор журнала Scientific American и ведущий ежемесячной колонки «Скептик», я получаю множество писем от людей, которые бросают мне вызов, рассказывая истории о своем необычном опыте, — например, о домах с привидениями, призраках, предсмертном и внетелесном опыте, НЛО, похищениях инопланетянами, предчувствии смерти во сне и многом другом. Самые интересные истории для меня те, которые повествуют о невероятных событиях.

В этих посланиях обычно кроется такой смысл: если я не могу предложить удовлетворительного естественного объяснения для данного конкретного случая, то общий принцип сверхъестественного сохраняется. Типичная история: человеку снится смерть друга или родственника, а на следующий день ему по телефону сообщают об этом. «Каковы шансы такого совпадения?» — спрашивают меня.

Вот здесь математика и помогает в аргументировании. Я не собираюсь с важным видом вещать о том, как школьный курс математики учит людей критически мыслить, потому что об этом твердит, вероятно, почти каждый учитель математики в каждом классе почти каждой школы (хотя бы раз в год).

Я просто хочу привести несколько конкретных примеров того, как я использую математику, которая помогает мне в процессе работы объяснять, почему с людьми происходят столь странные вещи.

Хотя я не всегда могу истолковать какие-то конкретные случаи, вероятностный принцип, называемый «законом больших чисел», показывает, что событие с низкой вероятностью появления при небольшом количестве испытаний имеет высокую вероятность появления при большом количестве испытаний. Или, как я люблю говорить, «один шанс на миллион реализуется в США 295 раз на дню».

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий