Knigionline.co » Прикладная литература » Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Любой с нас горазд повышать, разделять, строить во уровень также осуществлять прочие процедуры надо крупными количествами во разуме также со огромный быстротой. С Целью данного никак не необходимо регулировать 10-ки тыс. образцов также обучаться годами — довольно применять элементарные способы, изображенные во данной книжке. Они легкодоступны с целью людишек каждого года также различных точных возможностей.Данная книжка обучит вам рассматривать во разуме стремительнее, нежели в калькуляторе, фиксировать крупные количества также извлекать с арифметики наслаждение.Ми нравится рассуждать об этих людах, каким первоначальным прибыла во мозг идея рассматривать предмета. Скорее Всего, они одновременно подметили, то что результат в перстах прекрасно функционирует. Способен являться, тот или иной-нибудь древнейший индивид согласно фамилии Ог (появившийся еще вплоть до потопа) либо единственный с его друзей заявил: «Нас здесь единственный, 2, 3, 4, 5. Означает, нам необходимо 5 кусочков плода.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги

Используя распределительный закон, разделим задачу на такие операции:

46 000 х 46 000 + 2(46 000)(792) + 792 х 792.

Последнее выражение нужно немного упростить:

462 х 1 миллион + (46)(792)(2000) + 7922.

Но я не решаю подобные задачи в последовательном порядке, а начинаю с середины, потому что задача типа «3 на 2» труднее, чем возведение в квадрат двух- и трехзначных чисел.

Итак, в соответствии с принципом «в первую очередь со своего пути убирай сложное», я вычисляю 792 х 46 х 2 и добавляю три нуля в конец результата, то есть выполню следующие действия:

Используя метод вычитания, как показано выше, вычисляем 792 х 46 = 36 432, затем удваиваем результат для получения 72 864. Применение фонетического кода к числу 864 позволяет хранить его в памяти как 72 Fisher.

Следующий шаг: подсчитываем 462 х 1 000 000, что равно 2 116 000 000.

На этом этапе вы можете произнести: «Два миллиарда…».

Активизировав в памяти 72 Fisher, прибавляем к этому числу 116 миллионов, чтобы получить 188 миллионов. Но прежде чем озвучить количество миллионов, нужно проверить, следует ли переносить единицу в старший разряд при сложении Fisher, то есть числа 864 и 7922. Здесь на самом деле не надо вычислять 7922; достаточно определить, что результат вычисления 7922 будет довольно большой, чтобы в сумме с 864 000 превысить 1 миллион. (Вы можете предположить это исходя из того, что 8002 = 640 000, и это число в сумме с 864 000 явно превысит 1 миллион.) Таким образом, к 188 надо прибавить единицу и сказать: «…189 миллионов…».

Все еще держа в памяти слово Fisher, посчитайте квадрат числа 792, используя метод возведения трехзначных чисел в квадрат (округление в большую и меньшую стороны на 8 и т. д.), чтобы получить 627 264. Наконец, прибавьте 627 к Fisher, то есть к числу 864, и получите 1491. Так как мы уже сделали перенос единицы в разряд миллионов, отбросьте первую 1 у числа 1491 и произнесите: «…491 тысяча 264».

Иногда я забываю последние три цифры ответа, поскольку мой мозг полностью поглощен большими вычислениями. Поэтому, перед тем как выполнить итоговое сложение, я сохраняю цифру 2 (из числа 264) на пальцах и стараюсь запомнить 64, что обычно сделать нетрудно, потому что мы имеем склонность к запоминанию того, что слышали недавно. В случае же неудачи я могу восстановить последние две цифры путем возведения в квадрат последних двух цифр исходного числа, то есть 922 = 8464. Последние две цифры этого числа и есть те самые последние две цифры 64. (В качестве альтернативы можно преобразовать число 264 в фонетический код.)

Я сознаю, что процесс вычисления квадрата 46 7922 довольно громоздкий. Представляю вам схему того, как я возводил это число в квадрат:

Рассмотрим другой пример на возведение пятизначного числа в квадрат: 83 5222.

Как и прежде, вычисляем ответ в таком порядке:

83 х 522 х 2000, 832 х 1 миллион, затем 5222.

В первой задаче обратите внимание на то, что 522 имеет делитель 9. Значит, 522 = 58 х 9. Раскладывая 83 как 80 + 3, получим:

Результатом удвоения 43 326 будет число 86 652, что можно запомнить как 86 Julian. Поскольку 832 = 6889, мы можем произнести: «Шесть миллиардов…»

Сложение 889 + 86 = 975. Прежде чем произнести «975 миллионов», мы проверяем, не приведет сумма Julian (652 000) и квадрата 5222 к переносу единицы в разряд миллиардов.

Приблизительно оценив 5222 как 270 000 (500 х 540), убеждаемся, что переноса не будет. Поэтому можно спокойно сказать: «…975 миллионов…».

Наконец, возведение в квадрат 522 обычным способом приведет к числу 272 484, а его сложение с числом Julian (652 000) даст последнюю часть ответа: «…924 484».

В виде схемы решение данной задачи выглядит следующим образом:

УПРАЖНЕНИЕ: ВОЗВЕДЕНИЕ В КВАДРАТ ПЯТИЗНАЧНЫХ ЧИСЕЛ

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий