Knigionline.co » Прикладная литература » Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Любой с нас горазд повышать, разделять, строить во уровень также осуществлять прочие процедуры надо крупными количествами во разуме также со огромный быстротой. С Целью данного никак не необходимо регулировать 10-ки тыс. образцов также обучаться годами — довольно применять элементарные способы, изображенные во данной книжке. Они легкодоступны с целью людишек каждого года также различных точных возможностей.Данная книжка обучит вам рассматривать во разуме стремительнее, нежели в калькуляторе, фиксировать крупные количества также извлекать с арифметики наслаждение.Ми нравится рассуждать об этих людах, каким первоначальным прибыла во мозг идея рассматривать предмета. Скорее Всего, они одновременно подметили, то что результат в перстах прекрасно функционирует. Способен являться, тот или иной-нибудь древнейший индивид согласно фамилии Ог (появившийся еще вплоть до потопа) либо единственный с его друзей заявил: «Нас здесь единственный, 2, 3, 4, 5. Означает, нам необходимо 5 кусочков плода.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги

Пользуясь приемом большого пальца для запоминания ответа, вы зададите 7 на левой руке, соединив большой палец с безымянным, и 6 на правой, соединив большой палец с мизинцем. Как только вычислите последнюю цифру (она равна 3) и остаток (равный 1), можете «зачитать» итоговый ответ с ваших рук слева направо: «семь…шесть…три с остатком один».

Некоторые задачи на деление четырехзначных чисел дают четырехзначный ответ. В таком случае, поскольку у вас только две руки, вам придется вслух произнести цифру для тысячи и использовать правило большого пальца для запоминания остального ответа. Например:

Для решения этой задачи вы делите 8 на 3, чтобы получить цифру 2 для тысяч; произносите «две тысячи» вслух, затем делите 2352 на 3 привычным способом.

ДЕЛЕНИЕ НА ДВУЗНАЧНЫЕ ЧИСЛА

В этом разделе мы исходим из предположения, что вы уже освоили искусство деления на однозначные числа. Естественно, задачи на деление с увеличением делителя более сложные.

К счастью, в моем рукаве есть немного магии, чтобы облегчить вам жизнь.

Начнем с относительно простой задачи.

597 ÷ 14

Так как 597 находится между 14 х 10 и 14 х 100, ответ (так называемое частное) лежит между 10 и 100. Чтобы его найти, нужно в первую очередь задать вопрос: «Сколько раз по 14 даст в сумме 590?» Умножив 14 х 40 = 560, вы узнаете, что ответ будет в диапазоне «40 плюс»; так что можно смело произнести вслух «сорок».

Далее вычитаем 560 из 597 и получаем 37, что сводит задачу к делению 37 на 14. Так как 14 х 2 = 28, здесь ответ — 42. Вычитая 28 из 37, мы получаем остаток 9. Процесс решения задачи показан следующим образом.

Следующая задачка немного сложнее, потому что делитель в ней больше.

682 ÷ 23

В данном примере ответ будет двузначным числом, так как 682 находится между 23 х 10 = 230 и 23 х 100 = 2300. Чтобы найти цифру для десятка двузначного числа, нужно подумать: «Сколько раз по 23 даст в сумме 680?» Если вы попробуете 30, то увидите, что здесь незначительный перебор, так как 23 х 30 = 690. Но теперь вы знаете, что ответ лежит в диапазоне «20 плюс» и можете произнести это вслух. Затем вычтите 23 х 20 = 460 из 682, чтобы получить 222. Так как 23 х 9 = 207, ответ — 29 и остаток 222–207 = 15.

Теперь вычислим:

491 / 62

Так как 491 меньше, чем 62 х 10 = 620, ответ будет представлен одной цифрой с остатком. Можно попробовать 8, но 62 х 8 = 496, а это несколько больше делимого. Поскольку 62 х 7 = 434, ответ — 7 и остаток 491–434 = 57, или 7 и 57/62.

Один отличный трюк может облегчить решение таких задач. Помните, как сначала мы пытались перемножить 62 х 8 = 496, но обнаружили, что это число больше, чем нужно? Но это действие оказалось не напрасным. Помимо информации о том, что ответ — 7, оно также позволяет сразу определить остаток.

Поскольку 496 на 5 единиц больше 491, остаток будет на 5 единиц меньше делителя 62. Поскольку 62 — 5 = 57, то ответ — 7 и 57/62. Этот прием работает потому, что 491 = (62 х 8) — 5 = 62 х (7 + 1) — 5 = (62 х 7 + 62) — 5 = (62 х 7) + (62 — 5) = 62 х 7 + 57.

Теперь попробуйте решить пример 380 ÷ 39, используя вышеописанную уловку. Итак, 39 х 10 = 390, что больше делимого на 10. Стало быть, ответ будет 9 с остатком 39–10 = 29.

Следующий вызов для вас — деление четырехзначного числа на двузначное.

3657 / 54

Так как 54 х 100 = 5400, то ответ будет двузначным числом. Для получения первой цифры ответа необходимо выяснить, сколько раз по 54 даст в сумме 3657. Исходя из того что 54 х 70 = 3789 (что немного больше делимого), ответ будет где-то в диапазоне «60 плюс».

Далее умножаем 54 х 60 = 3240 и вычитаем 3657–3240 = 417. Как только вы произнесете «60», ваша задача упростится до 417 ÷ 54. Поскольку 54 х 8 = 432 (что тоже немного больше 417), последняя цифра будет 7 с остатком 54–15 = 39.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий