Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер (2005)
-
Год:2005
-
Название:Магия чисел. Ментальные вычисления в уме и другие математические фокусы
-
Автор:
-
Жанр:
-
Язык:Русский
-
Перевел:Владислав Ласкавый
-
Издательство:Манн, Иванов и Фербер (МИФ)
-
Страниц:75
-
ISBN:978-5-00057-270-2
-
Рейтинг:
-
Ваша оценка:
Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Артур Бенджамин, Майкл Шермер читать онлайн бесплатно полную версию книги
Преимущество этого метода разложения для устных вычислений состоит в том, что вам не приходится слишком многое держать в памяти. Рассмотрим другой пример 75 х 63.
75 х 63 = 75 х (9 х 7) = (75 х 9) х 7 = 675 х 7 = 4725.
Как и прежде, вы упрощаете этот пример типа «2 на 2» путем разложения 63 на 9 х 7 и затем умножаете 75 на эти числа.
(Кстати, мы можем переставить скобки во втором шаге вычислений по ассоциативному, или сочетательному, закону умножения.)
63х75 = 63х(5х5х3) = (63х5)х5х3 = 315x5x3 = 1575x3 = 4725.
Потренируйтесь на следующем примере:
57 х 24 = 57 х 8 х 3 = 456 х 3 = 1368.
Здесь можно разложить 24 как 6 х 4 для перехода к другому простому варианту вычислений:
57 х 24 = 57 х 6 х 4 = 342 х 4 = 1368.
Сравните данный подход с методом сложения.
В рамках метода сложения необходимо решить две задачи на умножение типа «2 на 1», а затем суммировать результаты.
При использовании метода разложения вам нужно выполнить только два действия на умножение типа «2 на 1» и «3 на 1». Метод разложения обычно снисходителен к вашей памяти.
Помните ту трудную задачу на умножение из предыдущей части этой главы? Вот она:
Мы решили ее достаточно легко с помощью метода вычитания, но разложение работает еще быстрее:
89 х 72 = 89 х 9 х 8 = 801 х 8 = 6408.
Задача существенно облегчается тем, что в середине числа 801 находится 0. Следующий пример показывает, что поиск варианта разложения чисел, позволяющего воспользоваться подобной ситуацией (когда есть 0 в середине числа), часто бывает оправданным. Рассмотрим два способа вычисления 67 х 42.
67 х 42 = 67 х 7 х 6 = 469 х 6 = 2814.
67 х 42 = 67 х 6 х 7 = 402 х 7 = 2814.
Обычно 42 раскладывают как 7 х 6, следуя правилу «используй больший множитель в первую очередь». Но задачу легче решить, разложив 42 как 6 х 7, поскольку это приводит к созданию числа с 0 в середине, что облегчает умножение.
Я называю такие числа дружелюбными произведениями.
Ниже поиск дружелюбного произведения проведен в процессе умножения двумя способами.
43 х 56 = 43 х 8 х 7 = 344 х 7 = 2408.
43 х 56 = 43 х 7 х 8 = 301 х 8 = 2408.
Не показался ли вам второй вариант более легким?
Применяя метод разложения, выгодно отыскивать дружелюбные произведения везде, где только можно. Следующий список должен в этом помочь. Я жду от вас не столько его запоминания, сколько простого ознакомления с ним.
Практикуясь, вы научитесь интуитивно определять дружелюбные произведения, и этот список станет для вас хорошим подспорьем.
Числа с дружелюбными произведениями
12: 12 х 9 = 108.
13: 13 х 8 = 104.
15: 15 х 7 = 105.
17: 17 х 6 = 102.
18: 18 х 6 = 108.
21: 21 х 5 = 105.
23: 23 х 9 = 207.
25: 25 х 4 = 100, 25 х 8 = 200.
26: 26 х 4 = 104, 26 х 8 = 208.
27: 27 х 4 = 108.
29: 29 х 7 = 203.
34: 34 х 3 = 102, 34 х 6 = 204, 34 х 9 = 306.
35: 35 х 3 = 105.
36: 36 х 3 = 108.
38: 38 х 8 = 304.
41: 41 х 5 = 205.
43: 43 х 7 = 301.
44: 44 х 7 = 308.
45: 45 х 9 = 405.
51: 51 х 2 = 102, 51 х 4 = 204, 51 х 6 = 306, 51 х 8 = 408.
52: 52 х 2 = 104, 52 х 4 = 208.
53: 53 х 2 = 106.
54: 54 х 2 = 108.
56: 56 х 9 = 504.
61: 61 х 5 = 305.
63: 63 х 8 = 504.
67: 67 х 3 = 201, 67 х 6 = 402, 67 х 9 = 603.
68: 68 х 3 = 204, 68 х 6 = 408.
72: 72 х 7 = 504.
76: 76 х 4 = 304, 76 х 8 = 608.
77: 77 х 4 = 308.
78: 78 х 9 = 702.
81: 81 х 5 = 405.
84: 84 х 6 = 504.
88: 88 х 8 = 704.
89: 89 х 9 = 801.
Ранее в этой главе вы обучились легкому способу умножать числа на 11. Он применим в методе разложения в ситуации, когда один из множителей равен 11, как в данном примере.