Пуговицы Наполеона. Семнадцать молекул, которые изменили мир - Джей Берресон, Пенни Лекутер (2003)
-
Год:2003
-
Название:Пуговицы Наполеона. Семнадцать молекул, которые изменили мир
-
Автор:
-
Жанр:
-
Оригинал:Английский
-
Язык:Русский
-
Перевел:Т. П. Мосолова
-
Издательство:АСТ
-
Страниц:167
-
ISBN:978-5-271-45962-7
-
Рейтинг:
-
Ваша оценка:
Пуговицы Наполеона. Семнадцать молекул, которые изменили мир - Джей Берресон, Пенни Лекутер читать онлайн бесплатно полную версию книги
Во время Второй мировой войны жевательную резинку выдавали войскам, чтобы поддерживать солдат в боевой готовности, однако все же вряд ли стоит рассматривать жвачку в качестве стратегического материала военного времени. Все экспериментальные попытки получить резину из изопрена приводили к созданию чего-то вроде чикла, поэтому стало понятно, что синтезировать искусственную резину придется из какого-то другого исходного вещества. Забавно, что технология этого процесса была разработана в Германии. Во время Первой мировой войны поставки резины из Юго-Восточной Азии в Германию были блокированы союзниками. Тогда крупные немецкие химические компании занялись созданием вариантов искусственной резины, лучшей из которых оказалась стирол-бутадиеновая резина (СБР).
Стирол впервые был выделен в конце XVIII века из смолы ликвидамбара смолоносного (Liquidamber orientalis) родом с юго-запада Турции. Через несколько месяцев экстрагированный стирол начинал густеть, что означает, что он постепенно полимеризовался.
Теперь этот полимер называют полистиролом и используют для создания пленок, упаковочного материала и одноразовой посуды. В качестве исходных веществ для синтеза резины немецкая компания “И. Г. Фарбениндустри” использовала синтетический стирол (который производили с 1866 года) и бутадиен. В СБР соотношение бутадиена (CH2=CH-CH=CH2) к стиролу составляет примерно 3:1, хотя точное соотношение компонентов и структура полимера может варьировать. Считается, что этот полимер имеет случайное расположение цис— и транс-связей.
Фрагмент структуры стирол-бутадиенового каучука, известного также как буна-S. СБР можно подвергнуть вулканизации.
В 1929 году компания “Стандарт ойл” из Нью-Джерси подписала с “И. Г. Фарбениндустри” соглашение о партнерстве в области создания синтетических масел. В соглашении оговаривалось, что “Стандарт ойл” имеет доступ к некоторым патентам “И. Г. Фарбениндустри”, включая патент на производство СБР. Однако компания “И. Г. Фарбениндустри” не обязана была сообщать технические подробности, и в 1938 году нацистское правительство проинформировало компанию, что США не получат никаких данных.
В итоге “И. Г. Фарбениндустри” открыла “Стандарт ойл” патент на производство СРБ, который, однако, содержал слишком мало информации, чтобы на его основе американцы смогли создать собственную резину. Но американская химическая промышленность мобилизовалась и достаточно скоро перешла к производству собственной стирол-бутадиеновой резины. В 1941 году объем производства синтетической резины в Америке составлял лишь восемь тысяч тонн, однако к 1945 году он превысил восемьсот тысяч тонн, что в значительной степени покрывало потребность страны в резине. Такое расширение производства за столь короткий срок называли вторым крупнейшим достижением в области химической технологии XX века после создания атомной бомбы. В следующие десятилетия были созданы другие виды синтетической резины (неопреновая, бутиловая, буна-N). Резиной стали называть многие полимеры со свойствами натурального каучука, синтезированные не из изопрена, а из других материалов.
В 1953 году Карл Циглер в Германии и Джулио Натта в Италии дополнительно усовершенствовали производство синтетической резины. Циглер и Натта независимо друг от друга разработали систему синтеза, позволявшую получать либо транс-, либо цис-полимеры в зависимости от типа катализатора. Теперь натуральную резину можно было получать синтетическим путем. Так называемые катализаторы Циглера-Натта, за открытие которых авторы получили в 1963 году Нобелевскую премию по химии, революционизировали химическую промышленность, поскольку позволили синтезировать полимеры со строго контролируемыми свойствами. В результате стало возможным синтезировать более эластичную, прочную, долговечную резину, не разрушавшуюся под действием растворителей или ультрафиолетового излучения, с большей сопротивляемостью удару, теплу и холоду.