Knigionline.co » Психология, Мотивация » Прокачай свой мозг!

Прокачай свой мозг! - Роберт Грисбек, Максимилиан Тайхер (2008)

Прокачай свой мозг!
Ни одна медицина не вызывает в предпоследние годы такого энтузиазма общественности, как исследование мозга. Мы чинаем все лучше осознавать, как трудится наш мозг, как он усвоает, классифицирует и накапливает видеоинформацию. Но одно открытие можетесть особенно обрадовать всех: мозг не дряхлеет! И, таким образом, общепринятые стереотипы о остеохондрозе и старческом идиотизме уже не соотносятся действительности. Мозжечок похож на мускулатуру, которую можно обучать. Собранные в этой книге астральные упражнения cамой разной целенаправленности помогут вам активизировать наряду с традиционным логическим мировосприятием также поэтическое и латеральное. Даже если вы сочтёте, что достаточно отлично разбираетесь в своих мыслишках, книга явит вам мышление с совершенно новой, поразительной стороны! Хо-рошьи новости с нижнего этажа В предпоследние годы ни одиная научная субординация не вызывает такого энтузиазма общественности, как исследование мозга. Индивидуумы, страдающие воспалениями головного мозжечка, получают надёжу на выздоровление, а здоровенькие с восхищением надзирают за открытиями.

Прокачай свой мозг! - Роберт Грисбек, Максимилиан Тайхер читать онлайн бесплатно полную версию книги

Два маляра красят дом. Оба работают с одинаковой скоростью. Вдвоем они покрасили бы этот дом за три дня, но после первого дня работы один из маляров заболел, и его коллега вынужден заканчивать работу в одиночку. Через сколько дней дом будет полностью покрашен?

Ответ (18)

У нас есть две литровые бутылки, одна из которых наполовину наполнена вином, а вторая – наполовину водой. Мы переливаем стакан вина (четверть литра) в бутылку с водой, хорошо перемешиваем и вновь переливаем стакан полученной смеси (также четверть литра) в бутылку с вином. В какой бутылке содержание вина будет больше?

Ответ (19)

Все это классические математические задачи, но умело обработанные и преподнесенные в занимательной форме, в отличие от тех примеров, которые вам приходилось решать в школе. Разница в том, что здесь, конечно, можно применять математические формулы (если вы вспомните подходящие), но больше требуются логика и воображение. Яркий пример отличия логики от математики демонстрирует следующая задача.

Два пешехода, расстояние между которыми составляет 12 километров, одновременно начинают двигаться навстречу друг другу со скоростью 4 километра в час. В момент начала движения птица, сидящая на плече первого пешехода, взлетает и мчится ко второму. Поравнявшись с ним, она разворачивается и снова летит к первому. Так продолжается до тех пор, пока пешеходы не встретятся. Скорость птицы – 30 километров в час. Сколько километров в общей сложности она пролетит до момента встречи?

Эта задача решается, как правило, с помощью геометрических рядов. Опытные математики находят ответ, не задумываясь, но им и в голову не приходит, что это можно сделать по-другому и намного проще. А вы додумались?

Ответ (20)

Элегантные упрощения свидетельствуют о творческом складе ума. Разумеется, это не значит, что все математики (включая учителей) полностью лишены этого качества. Один из самых известных математиков Карл Фридрих Гаусс, родившийся в Брауншвейге в 1777 году, на собственном опыте познал, что творческое мышление одновременно несет и радость, и муки. Когда ему было десять лет, учитель математики дал классу задание сложить все числа от 1 до 100. Маленький Гаусс справился за одну минуту, и ответ оказался верным. Но учителя это не обрадовало, так как он заподозрил ученика в обмане. Разве он мог подумать, что этот малолетний гений по ходу дела самостоятельно дошел до открытия бинома Ньютона. Он просто внимательно изучил задачу и заметил, что каждая последовательная пара чисел, взятых с начала и конца этого ряда, всегда дает в сумме 101 (1 + 100, 2 + 99, 3 + 98, 4 + 97 …) и таких пар насчитывается 50. В результате он просто умножил 50 на 101 и получил ответ: 5050.

Это поразительно красивое решение. А ведь красота, эстетика и ясность почти всегда являются признаками успешного решения задачи. Если доказательство изящно, оно должно быть верным. Точно так же химик, видя перед собой эстетичную модель молекулы, сразу приходит к выводу, что она «правильная». То же самое можно сказать и о физике, рассматривающем простую и изящную формулу. Если мысль красива, то и полученные в результате доказательства будут простыми и ясными, пути решения – элегантными, а выводы – убедительными. Даже если вы знаете, как обычно решается тот или иной тип задач или проблем, попробуйте сделать это иначе. Отвлекитесь от формул и диаграмм, доверьтесь интуиции, сознательно сделайте абсурдное допущение. Зачастую это ведет к решению. Вы уже знаете, что мозг – очень гибкий самоорганизующийся орган. Старайтесь руководствоваться этим в своих размышлениях. Большинство открытий и изобретений появились именно таким образом.

Эврика! Прикладные логические задачи

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий