О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич (1910)
-
Год:1910
-
Название:О принципе противоречия у Аристотеля. Критическое исследование
-
Автор:
-
Жанр:
-
Язык:Русский
-
Издательство:ЦГИ Принт
-
Страниц:13
-
ISBN:978-5-98712-038-5
-
Рейтинг:
-
Ваша оценка:
О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич читать онлайн бесплатно полную версию книги
Примечательно, что Лукасевич был не единственным человеком, кого потрясло открытие неевклидовой геометрии и подвигло на создание неаристотелевой логики. Одновременно с книгой Лукасевича выходит статья казанского философа, психолога и логика Н.А. Васильева [Васильев 1910], в которой говорится о «совершенно различной логике» на основе нового деления суждений “по качеству” – утвердительные, отрицательные и индифферентные. Последнее позволяет Васильеву рассматривать суждения вида «x есть P и x не есть P». Как следует из книги В.А. Бажанова о творчестве Н.А. Васильева, уже во второй половине 1910 г. Васильев вводит понятие воображаемой логики, развивает концепцию множественности логических систем и распространяет критику основных законов логики на закон противоречия (см. [Бажанов 2009: 124]). Этому посвящены последующие работы Васильева[33]. Как и у Лукасевича, мы находим: «Неаристотелева логика есть логика без закона противоречия. Здесь не лишним будет добавить, что именно неевклидова геометрия и послужила нам образцом для построения неаристотелевой логики» [Васильев 1912/1989: 54][34]. Одновременно с Лукасевичем и Васильевым построением новой логики под воздействием открытия новой геометрии вдохновился еще один ученый – американский философ, логик, математик, основоположник прагматизма и семиотики Ч. С. Пирс. В журнале “The Monist” опубликованы отрывки из писем Пирса о занятиях неаристотелевой логикой. В его письме есть такие слова: «… я осмысливал ситуацию, когда допускается, что законы логики отличны от тех, которые мы знаем. Это была своего рода неаристотелева логика в том же смысле, в каком мы говорим о неевклидовой геометрии» (см. [Carus 1910a: 45])[35].
Так революция в геометрии произвела революцию в логическом мышлении.
7. Вторым событием, поразившим современников, был кризис в основаниях математики, продолжающийся до сих пор и наиболее ярко выразившийся в парадоксе Рассела (1902 год). Лукасевич подробно рассматривает его в XVIII главе под названием «Принцип противоречия и конструкции разума». Стандартная формулировка этого парадокса выглядит так. Пусть K – множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то по определению K оно не должно быть элементом K – противоречие. Если нет – то по определению K оно должно быть элементом K – вновь противоречие. Таким образом, в этой конструкции разума мы получаем, что доказуемы оба высказывания (K ∈ K) и – (K ∈ K), а следовательно, и их конъюнкция. Тогда доказуема произвольная формула B (см. выше). Хотя Лукасевич и говорит здесь, что он не будет пытаться решить эту проблему, но, тем не менее, отмечает, что «у нас есть выбор: либо не использовать принцип противоречия, либо отбросить принцип исключенного третьего[36]». Что касается принципа исключенного третьего, то при формулировке парадокса Рассела без него можно обойтись (см. примечание 2 к гл. XVIII), а вот не применение или ограничение принципа противоречия в самой теории множеств выливается в построение паранепротиворечивой теории множеств (см. [Brady 1989]).
Спустя более полувека после публикации этого парадокса в книге [Френкель и Бар-Хиллел 1966: 18], ставшей классикой, подчеркивается: «С самого начала следует уяснить, что в традиционной трактовке логики и математики не было решительно ничего, что могло бы служить в качестве основы для устранения антиномии Рассела. ‹…› Некоторый отход от привычных способов мышления явно необходим, хотя место этого отхода заранее не ясно». Можно только догадываться, что испытывал Лукасевич, поглощенный мыслью о построении новой логики, когда столкнулся с очень простой, но явно противоречивой конструкцией разума в виде парадокса Рассела.