Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Заметим, что каждая пилотируемая марсианская миссия, проведенная по этому сценарию, потребует в общей сложности 49 рейсов РОСД. Это было бы совершенно нелепо, если бы РОСД эксплуатировались аналогично существующим ракетам-носителям – с частотой запусков около одного в месяц. Однако если сторонники РОСД приложат усилия, то эти ракеты можно было бы запускать как самолеты, быстро возвращая их на Землю, чтобы частота полетов выросла хотя бы до нескольких раз в неделю. План, по всей вероятности, жизнеспособный. Однако этот подход очень высокотехнологичен. Помимо требований к производительности и эксплуатационным качествам РОСД, которые до сих пор не достигнуты, необходимо, чтобы и жидкий кислород, и жидкий водород можно было бы перемещать из одного орбитального РОСД в другой в условиях невесомости. Сейчас и жидкий кислород, и жидкий водород являются криогенными (ультрахолодными) жидкостями, и перемещение таких жидкостей в условиях микрогравитации из одного бака в другой еще никогда не проводили. Эта операция чревата проблемами. В эластичном баллоне криогенные жидкости замерзнут, а насосы не будут работать, потому что в невесомости нет никакого способа заставить жидкость двигаться к точке всасывания (насос втянет небольшой объем и остановится, потому что новая жидкость к нужной точке не потечет). Можно было бы привести бак в движение, медленно ускоряя транспортное средство ракетными двигателями или разместить их на вращающейся платформе, также предлагались капилляры и другие устройства, которые используют поверхностное натяжение жидкости, чтобы управлять ее движением. Кроме того, по меньшей мере для кислорода существует возможность контролировать движение жидкостей с помощью магнитов. (Жидкий кислород – парамагнетик, его можно притянуть магнитом.) Короче говоря, пока ситуация не безнадежна, но нужно проделать большую работу, чтобы на этот план можно было положиться.

К настоящему моменту я склоняюсь к старомодному варианту «Марс Директ» с одноразовыми ТРН, химическими реактивными двигателями, роверами, запряженными лошадьми (ну, не совсем), и остальными примитивными атрибутами наших нынешних Темных веков освоения космоса. Возможно, существуют более удобные способы добраться на Марс, и, когда они окажутся доступны, мы будем их использовать. Но, скорее всего, этого не произойдет до тех пор, пока мы не начнем использовать то, что имеем сейчас, чтобы попасть на Марс и сдвинуться с мертвой точки. Что морские волки говорят о тех, кто покорил семь морей? Железные люди и деревянные корабли, а не деревянные люди и железные корабли. То же применимо и к Марсу.

Мы можем долететь на Марс, используя то, что у нас есть сейчас.

ΔV и гиперболическая скорость

В этой главе я много говорил о ΔV и гиперболической скорости. Это два различных понятия, но они взаимосвязаны.

Изменение скорости, или ΔV, измеряется в единицах скорости, таких как километры в секунду (км/с), и является фундаментальным понятием ракетостроения. Если у вас есть космический корабль с известной сухой массой М (то есть без топлива), определенное количество топлива, Р, и ракетный двигатель со скоростью истечения С, следующее уравнение, известное как «ракетное уравнение», показывает, насколько большую ΔV может произвести система:

(М + Р)/М = exp(ΔV/C) (1)

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий