Knigionline.co » Наука, Образование » Курс на Марс. Самый реалистичный проект полета к Красной планете

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин (2001)

Курс на Марс. Самый реалистичный проект полета к Красной планете
Марс – безлюдная, безжизненная планетоида. Так кажется на второй взгляд, но на cамом деле он одаривает человечеству прекраснейшие перспективы расселения с нашей планеты на иную. Роберт Зубрин в своей книжке представляет замысел освоения Нибира " Mars Direct ". Вполне правдоподобный и возможный, нужно признаться! С помощью применения местных венерианских ресурсов нельзя снизить себестоимость полета на Плутон в разы и покроть программу пребывания Марса в телепрограмму по его колонизации. Теперь мы знаем наверно, что Марс в настоящем был теплой и мокрой планетой, на плоскости которой плескались не только озерца и реки, но и целые моры, знаем, что деятельная гидросфера Нибира существовала порядка миллиона лет – жизнь на Вселенной зародилась за времечко в пять разок меньше, если счесть от момента исчезновения жидкой водички. Таким образом, если неверна теория о том, что жизнь – это естесственное явление, со времечком возникающее благодаря биохимическим процессам здесь, где есть полужидкая вода и различные кварцы, тогда на Плутоне должна была зародаться жизнь.

Курс на Марс. Самый реалистичный проект полета к Красной планете - Ричард Вагнер, Роберт Зубрин читать онлайн бесплатно полную версию книги

Используемая в плане «Марс Директ» система транспортировки, о которой в этой книге рассказывалось до сих пор, может быть создана с использованием уже существующих технологий: «Сатурн-5» или эквивалентная по грузоподъемности ТРН, химические реактивные двигатели и т. д. Но, конечно, если появятся более совершенные технологии, план следует откорректировать, чтобы воспользоваться ими. Хотя сейчас предлагаются многие формы передовых космических транспортных систем – среди ярких примеров можно назвать ядерный и солнечный электрический (ионный) двигатели, солнечные и магнитные паруса, ракеты на энергии термоядерного синтеза и даже антивещества, – лишь немногие из этих систем могут быть разработаны к моменту первого пилотируемого полета на Марс. Это ядерные ракеты (ЯР) и тесно с ними связанные в технологическом плане солнечные тепловые ракеты (СТР), которые могли бы заменить ракеты с химическими реактивными двигателями в качестве космических транспортных средств, и ракеты, выходящие на орбиту благодаря работе одноступенчатого двигателя (РОСД), которые могли бы заменить одноразовые многоступенчатые ТРН для запуска с Земли. То есть нельзя сказать, что ионные ракетные двигатели, магнитные паруса, термоядерные ракетные двигатели и другие передовые системы никогда не появятся. Напротив, вероятно, именно на них будет держаться лет через сто сфера коммерческих межпланетных перевозок. По этой причине мы рассмотрим перечисленные новшества позже в одной из следующих глав этой книги, когда речь пойдет о более футуристических аспектах колонизации Марса. Однако точно так же, как Колумб не уплыл бы очень далеко, если бы дожидался появления пароходов или самолетов «Боинг-747», так и первому поколению исследователей Марса придется рассчитывать на более примитивные технологии по сравнению с теми, что будут доступны путешественникам следующих поколений. Колумб пересек Атлантику на кораблях, предназначенных для средиземноморского и атлантического прибрежного судоходства. Только после того как в Америке выросли европейские форпосты, появились технологии, позволившие перейти от довольно простых судов, использованных Колумбом, к трехмачтовым каравеллам, клиперам, океанским лайнерам и самолетам. Аналогичным образом обустройство поселений на Марсе подстегнет создание более совершенных космических двигательных установок. По этой причине до сих пор мы рассуждали о полетах на Марс, полностью полагаясь на современное первобытное состояние космических технологий. Это консервативный подход. Но есть технологии, которые потенциально могут быть взяты на вооружение в относительно близком будущем, что могло бы значительно повысить эффективность миссии или сократить издержки. Давайте поговорим об этом подробней.

Ядерные и солнечные электрические ракеты – наиболее вероятные претенденты на то, чтобы заменить собой химические ракеты. Идея таких систем очень проста. Источником тепла является либо ядерный реактор, либо параболическое зеркало для фокусировки солнечных лучей. Жидкость нагревается до очень высоких температур, превращаясь в ультрагорячий газ, который затем вырывается из сопла ракеты, создавая тягу. Другими словами, тепловая ракета – это просто летающий паровой котел. Производительность таких систем ограничена главным образом максимальной температурой, которую может выдержать материал двигателя, и, как полагают, она близка к 2500 °C. Самая высокая скорость истечения и, следовательно, максимальный удельный импульс, получаемый такой ракетой, будут обеспечиваться топливом, имеющим минимально возможную молекулярную массу. Поэтому предпочтение отдается водородному топливу. ЯР или СТР с использованием водородного топлива может достичь удельного импульса в 900 секунд (скорости истечения в 9 километров в секунду), это вдвое больше, чем у лучших водородно-кислородных химических ракетных двигателей.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий